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Abstract

In this work various symbol spaces with values in a sequentially complete lo-
cally convex vector space are introduced and discussed. They are used to define
vector-valued oscillatory integrals which allow to extend Rieffel’s strict deforma-
tion quantization to the framework of sequentially complete locally convex alge-
bras and modules with separately continuous products and module structures,
making use of polynomially bounded actions of Rn. Several well-known integral
formulas for star products are shown to fit into this general setting, and a new
class of examples involving compactly supported Rn-actions on Rn is constructed.
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1 Introduction

Deformation quantization as introduced in [2] comes in several different flavours: in
formal deformation quantization one deforms the commutative pointwise product of
the Poisson algebra of smooth functions on a Poisson manifold into a noncommutative
star product as a formal associative deformation in the sense of Gerstenhaber [14] with
deformation parameter ~. Here the general existence and classification for arbitrary
Poisson manifolds is known and follows from Kontsevich’s formality theorem [22], see [24]
for a introductory textbook.

However, for many reasons formal deformations are not sufficient: for the original
application to quantum mechanics one has to treat ~ as a positive number and not
just as a formal parameter. But also applications beyond quantum theory require a
more analytic framework. In particular, deformation quantization provides fundamental
examples in noncommutative geometry where a C∗-algebraic formulation is needed.

In [23], Rieffel introduced a very general way to construct C∗-algebraic deformations
based on a strongly continuous action of Rd on a C∗-algebra A. For the smooth vectors
A∞ with respect to the action a product formula based on an oscillatory integral was
established, generalizing the well-known Weyl quantization of R2n. In a second step, a
matching C∗-norm is constructed leading to a continuous field of C∗-algebras over the
parameter space of ~ ∈ R. This construction and variants of it have by now found many
applications in noncommutative geometry [10,13,23] and quantum physics, in particular
in the context of quantum field theory on noncommutative spacetimes [1, 8, 11, 17,19].

While for the construction of deformed C∗-algebras Rieffel’s work is sufficient, it
turns out that the first step of deforming the smooth vectors A∞ is of interest already
for it’s own sake: Rieffel worked with a Fréchet algebra with an isometric action.

It is this situation which we want to generalize in various directions in the present
work. First the restriction to a Fréchet algebra has to be overcome as there are several
examples of interest which do not fall into this class. When interested in noncommuta-
tive spacetimes, a smooth structure in form of a deformation of the smooth functions is
needed for many reasons. Thus we are interested in e.g. deformations of C∞0 (M). More-
over, together with a deformation of algebras one is interested in a possible deformation
of modules as well. In the above example one might also be interested in a corresponding
deformation of the distribution spaces C∞0 (M)′. Hence we clearly have to pass beyond a
Fréchet situation. Here we face several new phenomena: first of all products or module
structures may be separately continuous without being continuous. In fact, there are
many natural examples like this. Second, sequentially complete locally convex spaces
need not be complete, with the distribution spaces as the most prominent examples.
Third, the restriction to isometric actions, which is natural in the original C∗-setting,
seems to be too restrictive in a more general locally convex framework. Again, many
examples of interest show that one has to overcome this restriction.

As is well known, scalar-valued oscillatory integrals can be defined for more gen-
eral functions than smooth functions with bounded derivatives – here the Hörmander
symbols are a natural candidate. Thus we will adapt the notion of a symbol to the
vector-valued case and study oscillatory integrals. These will be needed to handle ac-
tions of Rn which are not isometric but satisfy certain polynomial growth conditions.
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Compared to the scalar case the new feature is that for every continuous seminorm (of a
defining system of seminorms) of the target space we have to allow for a specific growth.
The examples show that we cannot expect to have a uniform growth for all seminorms.

The main result of this work is the construction of a Rieffel deformation for a sequen-
tially complete locally convex algebra with a separately continuous product with respect
to a smooth polynomially bounded action of Rn by automorphisms. Analogously, we
give the corresponding deformation for a sequentially complete locally convex module
with separately continuous module structure, provided the module structure is covari-
ant for the Rn-action. To this end we introduce the relevant symbol spaces and their
oscillatory integrals based on a Riemann integral as we want to include sequentially
complete spaces as well. This part is clearly of independent interest. We discuss several
known examples within this framework and provide one new example of an action of
R
n with compact support. A priori one can only guarantee exponential bounds for the

derivatives of such an action, but by a particular construction we achieve polynomial
growth behaviour. Actions of this type are needed in models of locally noncommutative
spacetimes as introduced in [1, 19]. In fact, the wish to have a smooth version of [19]
was one of the main motivations to develop the above generalization of Rieffel’s origi-
nal work as a compactly supported action cannot be expected to be isometric for the
seminorms of smooth functions. In the diploma thesis [18, Sect. 6.2] some aspects of the
vector-valued oscillatory integrals were already anticipated.

It should be mentioned that there are still generalizations possible. One important
step beyond Rieffel’s original setting is to include actions of other Lie groups than
R
n. Here one first needs to find an analogue of Weyl quantization which then serves as

universal deformation formula. This point of view was taken in the works of Bieliavsky et
al., see e.g. [3–5, 7]. While these works mainly deal with the C∗-algebraic deformation,
in a more recent work [6], Bieliavsky and Gayral discuss also deformation aspects of
Fréchet algebras based on symbol spaces and oscillatory integrals similar to ours. We
leave it to a future investigation of whether their construction can be extended beyond
the Fréchet case: in principal this looks very promising.

The paper is organized as follows. In Section 2 we introduce vector-valued symbols
in the spirit of Hörmander symbols. However, the order as well as the type of the symbol
may depend on the seminorm of the target space, a generalization needed to deal with
the examples discussed later. We introduce in detail various symbol spaces, investigate
the continuity properties of the usual algebraic manipulations, and show that the affine
symmetries of the domain give continuous group actions on the symbol spaces. In par-
ticular, the translations act smoothly. In Section 3 we discuss the oscillatory integrals.
Our approach follows the usual scalar case with the technical complication that we have
to deal with many seminorms on the target instead of one. Thus a careful investigation
of the polynomial growth is presented. The integrals are based on a Riemann integral for
the smooth compactly supported functions as we want to include targets which are only
sequentially complete. After this preparation, Section 4 is devoted to the deformation
program. Based on the developed oscillatory integrals we extend Rieffel’s construction
to actions of Rn by automorphisms on sequentially complete locally convex algebras
with separately continuous products and their modules. In case where the products
are continuous also the resulting deformed products are continuous. Finally, Section 5
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contains the examples. First we discuss the usual action of R2n on itself by translations
and the induced action on various function spaces. Here in particular the scalar symbol
spaces, the Schwartz space, and certain distribution spaces are discussed. This way
we show that the well-known Weyl product formula, being defined pointwise for these
spaces, can be understood as resulting from the oscillatory integral formulas. This is a
nontrivial statement as in all cases the action is not isometric. The second example will
be used in a future project for the construction of locally noncommutative spacetimes
and corresponding quantum field theory models. It provides an action of Rn on Rn

with compact support inside a given compact subset such that the induced action on
the smooth functions is polynomially bounded. The difficulty is to pass from a trivially
given exponential growth of the derivatives to a polynomial growth.

Acknowledgements: It is a pleasure to thank Pierre Bieliavsky, Victor Gayral, and
Ryszard Nest for various discussions. We gratefully acknowledge the hospitality and
support extended to us by the Erwin-Schrödinger Institute (S.W.) and the University
of Freiburg (G.L.) during different stages of this work. Finally, we would like to thank
the participants of the Scalea conference 2011, where the results have been presented,
for fruitful discussions. The work of G.L. is supported by the FWF project P22929–N16
“Deformations of Quantum Field Theories”.

2 Vector-valued symbols

In this section we introduce vector-valued symbols as smooth functions F : Rn → V
which take values in a sequentially complete locally convex vector space V over C and
satisfy polynomial growth conditions for all their derivatives. At the present stage, all
definitions also make sense for a V being a real vector space only, but as soon as we
discuss the oscillatory integral, complex phases will enter the game. In the case of scalar
functions, with target space V = C, these spaces are closely related to Hörmander’s
symbol classes [21, Section 7.8], see also [16,20].

Definition 2.1 Let V be a sequentially complete locally convex space and let F ∈
C k(Rn, V ) where k ∈ N0 ∪ {+∞}. Then for every continuous seminorm q on V ,
every multiindex µ ∈ Nn

0 with |µ| ≤ k, and m, ρ ∈ R, we define

‖F‖m,ρq,µ := sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m−ρ|µ|)

q

(
∂|µ|F

∂xµ
(x)

)
∈ [0,+∞]. (2.1)

The quantity ‖F‖m,ρq,µ controls how the µ-th derivative of F grows at infinity with
respect to the seminorm q, compared to a polynomial of order m: A polynomial P ∈
V [x1, . . . , xn] of orderm clearly satisfies ‖P‖m,1q,µ <∞ for all multiindices µ, and ‖F‖m,ρq,µ <
∞ with ρ > 1 (respectively ρ < 1) indicates that the derivatives of F grow slower
(respectively faster) than those of a polynomial.

In order to define the symbol classes we now fix a defining system Q of continuous
seminorms on V . The canonical choice is of course to take all continuous seminorms,
but sometimes it will be advantageous to take only a small and manageable system. The
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following definitions will formally depend on this choice, but the effect is only minor.
Later we will see that the oscillatory integrals are independent of the particular choice
of Q.

We assign to every q ∈ Q real numbers m(q) and ρ(q). The corresponding map

m : Q 3 q 7→ m(q) ∈ R (2.2)

will be called an order for Q and the map

ρ : Q 3 q 7→ ρ(q) ∈ R (2.3)

is referred to as a type for Q.
The natural ordering of R induces one for the set of all orders as well as for the set

of all types. For two orders m, m′ we write

m ≤m′ if m(q) ≤m′(q) (2.4)

for all q ∈ Q. Then “≤” makes the set of all orders a directed set, and we also write
m <m′ if m(q) <m′(q) for all q ∈ Q.

If we set m(q) := m ∈ R for all q ∈ Q we get an order, called the constant order, and
analogously the constant type ρ(q) = ρ ∈ R. It will turn out that this is usually too
restrictive and we need more freedom in choosing an order and a type. More generally,
an order m is called bounded from above or from below by some number α or β if for
all q ∈ Q one has m(q) ≤ α or m(q) ≥ β, respectively.

In the following it will be reasonable to ask for the condition

m(c q) = m(q) (2.5)

whenever q, c q ∈ Q for a constant c > 0. In particular, for a Banach space V we usually
take only the constant orders by specifying their value on the norm. If V is a Fréchet
space, we will usually take a countable system Q, and often consider unbounded orders.

Definition 2.2 (Symbols) Let V be a sequentially complete locally convex space with
defining system of seminorms Q, and let m and ρ be an order and a type for Q.

i.) A function F ∈ C∞(Rn, V ) is called a symbol of order m and type ρ if for all
q ∈ Q and µ ∈ Nn

0 one has

‖F‖m,ρ
q,µ := ‖F‖m(q),ρ(q)

q,µ <∞. (2.6)

ii.) The set of all symbols of order m and type ρ is denoted by Sm,ρ(Rn, V ).

Sometimes we will abbreviate the space of symbols simply by Sm,ρ(V ) or even by
Sm,ρ if V is clear from the context. However, note that Sm,ρ(Rn, V ) still depends on
the choice of Q.

It is clear that the ‖ · ‖m,ρ
q,µ are seminorms on Sm,ρ(Rn, V ). We will endow the space

of symbols with the corresponding locally convex topology, called the Sm,ρ-topology.
This makes Sm,ρ(Rn, V ) a Hausdorff locally convex space since V is Hausdorff and the

prefactor (1 + ‖x‖2)− 1
2
(m(q)−ρ(q)|µ|) is nowhere vanishing.
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In the following, the smooth functions C∞(Rn, V ) will always be equipped with the
topology determined by all seminorms

pK,`,q(F ) := sup
x∈K
|µ|≤`

q(∂µxF (x)), (2.7)

where K runs over compact subsets of Rn, l ∈ N0, and q ∈ Q, and the smooth functions
of compact support C∞0 (Rn, V ) carry their usual inductive limit topology.

Proposition 2.3 Let V be a sequentially complete locally convex space with a defining
system of seminorms Q, and let m and ρ be an order and a type for Q.

i.) We have continuous inclusions

C∞0 (Rn, V ) −→ Sm,ρ(Rn, V ) −→ C∞(Rn, V ). (2.8)

ii.) The symbols Sm,ρ(Rn, V ) are dense in C∞(Rn, V ).

iii.) The symbols Sm,ρ(Rn, V ) are sequentially complete and even complete if V is com-
plete.

iv.) For m ≤m′ and ρ ≥ ρ′ we have the continuous inclusion

Sm,ρ(Rn, V ) −→ Sm
′,ρ′(Rn, V ). (2.9)

More precisely, we have for all F ∈ Sm,ρ, all q ∈ Q, and all µ ∈ Nn
0

‖F‖m
′,ρ′

q,µ ≤ ‖F‖m,ρ
q,µ . (2.10)

Proof. Clearly, we have a set-theoretic inclusion in (2.8) as compactly supported func-
tions decay fast enough to have finite symbol norms (2.1) for any choices of the orders
or types. With a compact set K ⊆ Rn, and F ∈ C∞K (Rn, V ), we get

‖F‖m,ρ
q,µ = max

x∈K

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|µ|)

q

(
∂|µ|F

∂xµ
(x)

)
≤ max

x∈K

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|µ|) · pK,|µ|,q(F ),

with the seminorm (2.7). Since the maximum over the first factor is finite, we see that
for every compact subset K, the inclusion

C∞K (Rn, V ) −→ Sm,ρ(Rn, V )

is continuous. By the universal property of the inductive limit topology of C∞0 (Rn, V ),
this is equivalent to the continuity of the first inclusion in (2.8). For the second inclusion,
we fix a compact subset K ⊆ R

n as well as ` ∈ N0 and q ∈ Q. Then for a symbol
F ∈ Sm,ρ(Rn, V ) we have

pK,`,q(F ) = max
x∈K
|µ|≤`

q

(
∂|µ|F

∂xµ
(x)

)

6



≤ max
x∈K
|µ|≤`

(
1 + ‖x‖2

) 1
2
(m(q)−ρ(q)|µ|)

sup
x∈Rn
|µ|≤`

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|µ|)

q

(
∂|µ|F

∂xµ
(x)

)

= cmax
|µ|≤`
‖F‖m,ρ

q,µ ,

with a constant c > 0, where we used the fact that the continuous function x 7→
(1 + ‖x‖2)− 1

2
(m(q)−ρ(q)|µ|) is nowhere vanishing and hence has a locally bounded inverse.

This shows the continuity of the second inclusion in (2.8). But then the second part
is clear since already C∞0 (Rn, V ) is dense in C∞(Rn, V ). In order to show sequential
completeness, let (Fi)i∈N be a Cauchy sequence in Sm,ρ(Rn, V ). Since the C∞-topology
is coarser than the Sm,ρ-topology by the first part, and since C∞(Rn, V ) is sequentially
complete, we get convergence Fi −→ F to some smooth function F ∈ C∞(Rn, V ) in
the C∞-topology. We have to show that F ∈ Sm,ρ(Rn, V ) and Fi −→ F in the Sm,ρ-
topology. Thus let ε > 0, q ∈ Q, and µ ∈ Nn

0 be given. Then fix N ∈ N0 such that
i, j ≥ N gives ‖Fi − Fj‖m,ρ

q,µ < ε by the Cauchy condition. For a point x ∈ Rn we have

by the pointwise convergence
∂|µ|Fj
∂xµ

(x) −→ ∂|µ|F
∂xµ

(x) a N ′ ≥ N depending on x such that

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|µ|)

q

(
∂|µ|Fj
∂xµ

(x)− ∂|µ|F

∂xµ
(x)

)
< ε (∗)

for all j ≥ N ′. Thus for i ≥ N we get

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|µ|)

q

(
∂|µ|(F − Fi)

∂xµ
(x)

)

≤
(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|µ|)

(
q

(
∂|µ|(F − Fj)

∂xµ
(x)

)
+ q

(
∂|µ|(Fj − Fi)

∂xµ
(x)

))
(∗)
≤ ε+ ‖Fi − Fj‖m,ρ

q,µ

≤ 2ε.

Since this estimate can be done for all x ∈ Rn, we can take the supremum over all
x ∈ Rn and get ‖F − Fi‖m,ρ

q,µ ≤ 2ε. Hence F −Fi ∈ Sm,ρ(Rn, V ) for i ≥ N and thus also
F ∈ Sm,ρ(Rn, V ). Moreover, we conclude that Fi −→ F in the Sm,ρ-topology. Clearly,
if V is even complete we can repeat the argument with nets instead of sequences. For
the last part, it is sufficient to show the estimate (2.10). Since for m(q) ≤ m′(q) and
ρ(q) ≥ ρ′(q) we have(

1 + ‖x‖2
)− 1

2
(m(q)−ρ(q)|µ|) ≥

(
1 + ‖x‖2

)− 1
2
(m′(q)−ρ′(q)|µ|)

for every point x ∈ Rn and every µ ∈ Nn
0 , the estimate (2.10) follows. �

In case V is a Banach space, we choose just its norm ‖ · ‖ in order to define the
space of symbols. In this case, the order m := m(‖ · ‖) and the type ρ := ρ(‖ · ‖) are
just single numbers, and we write ‖ · ‖m,ρµ instead of ‖ · ‖m,ρ‖·‖,µ. However, Sm,ρ(Rn, V ) is
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no longer a Banach space but a Fréchet space since we have to take care of countably
many differentiations. For a Fréchet space V , we take a countable defining system of
seminorms and hence an order is determined by fixing countably many numbers m(qn).
Thus, in this situation the symbols are again a Fréchet space.

Note that the inclusion C∞0 (Rn, V ) ⊂ Sm,ρ(Rn, V ) is in general not (sequentially)
dense in the Sm,ρ-topology. However, we will show later (Proposition 2.10, iv.)), that
it is dense in a weaker topology. As a preparation for this, we need to study the
multiplication properties of symbols.

2.1 Operations with symbols

In this subsection we discuss several operations one can perform with symbols, like
differentiation, multiplication, composition with linear maps, and restriction. We begin
by showing that the topologies of the symbol spaces are compatible with differentiation.

Proposition 2.4 Let V be a sequentially complete locally convex space with a defining
system of seminorms Q, and m,ρ an order and a type for Q. Then the partial derivatives
are continuous linear maps

∂|ν|

∂xν
: Sm,ρ(Rn, V ) −→ Sm−ρ|ν|,ρ(Rn, V ). (2.11)

More precisely, we have for all µ ∈ Nn
0 and F ∈ Sm,ρ(Rn, V )∥∥∥∥∂|ν|F∂xν

∥∥∥∥m−ρ|ν|,ρ
q,µ

= ‖F‖m,ρ
q,µ+ν . (2.12)

Proof. We only have to show the second statement which is clear from the definition.
�

For a general discussion of multiplication of symbols, we now consider three sequen-
tially complete locally convex spaces V , W , and U together with a bilinear map

µ : V ×W −→ U. (2.13)

For simplicity, we require that µ is continuous and not just separately continuous or
sequentially continuous. In many applications, this will be the case. Now we fix a
defining system R of seminorms on U and filtrating defining systems of seminorms Q

and Q′ on V and W , respectively. Then by continuity of µ we get for every r ∈ R

seminorms q ∈ Q and q′ ∈ Q′ and a constant c such that

r(µ(v, w)) ≤ c q(v) q′(w) , v ∈ V ,w ∈ W . (2.14)

For two orders m and m′ on V and W we consider an order m′′ on U such that for all
r ∈ R we have q ∈ Q and q′ ∈ Q′ such that (2.14) holds and

m′′(r) ≥m(q) +m′(q′). (2.15)
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In this case, we symbolically write m′′ ≥ m + m′ by some slight abuse of notation.
Note that we relate here orders on different sets of seminorms (even on different spaces).
Clearly, for given orders m and m′ we can construct an order m′′ with this property
by fixing a choice of seminorms q(r) and q′(r) satisfying (2.14) and setting

m′′(r) = m(q(r)) +m′′(q′(r)) (2.16)

for all r ∈ R. In the same spirit we write ρ′′ ≤ min(ρ,ρ′) for types ρ on V , ρ′ on W , and
ρ′′ on U , again with respect to the continuous bilinear map µ. With these conventions
in mind, we can prove the following statement.

Proposition 2.5 Let V , W , and U be sequentially complete locally convex spaces, R a
defining system of seminorms on U , and Q, Q′ filtrating defining systems of seminorms
on V , W respectively. Furthermore, let µ : V ×W −→ U be a continuous bilinear map.

i.) Pointwise evaluation of µ gives a continuous bilinear map

µ : Sm,ρ(Rn, V )× Sm
′,ρ′(Rn,W ) −→ Sm

′′,ρ′′(Rn, U) , (2.17)

µ(F,G)(x) := µ(F (x), G(x)) , (2.18)

whenever m′′ ≥ m +m′ and ρ′′ ≤ min(ρ,ρ′) with respect to µ. More precisely,
for F ∈ Sm,ρ(Rn, V ) and G ∈ Sm

′,ρ′(Rn,W ) we get

‖µ(F,G)‖m
′′,ρ′′

r,κ ≤ 2|µ|c max
ν≤κ
‖F‖m,ρ

q,ν max
ν′≤κ
‖G‖m

′,ρ′

q′,ν′ (2.19)

whenever r, q, and q′ satisfy the continuity property (2.14) with respect to µ.

ii.) For F ∈ Sm,ρ(Rn, V ), G ∈ Sm
′,ρ′(Rn′ ,W ), let

µ(F,G) : Rn ⊕Rn′ → U, µ(F,G)(x, y) := µ(F (x), G(y)) . (2.20)

Then we have a continuous bilinear map

µ : Sm,ρ(Rn, V )× Sm
′,ρ′(Rn′ ,W ) −→ Sm

′′,ρ′′(Rn ⊕Rn′ , U) (2.21)

whenever m′′ ≥ max{m,m′,m +m′} and ρ′′ ≤ min{0,ρ,ρ′} with respect to µ.
Explicitly, for F ∈ Sm,ρ(Rn, V ), G ∈ Sm

′,ρ′(Rn′ ,W ), we get, ν ∈ Rn, ν ′ ∈ Rn′,

‖µ(F,G)‖m
′′,ρ′′

r,ν⊕ν′ ≤ c ‖F‖m,ρ
q,ν ‖G‖

m′,ρ′

q′,ν′ (2.22)

whenever r, q, q′ satisfy the continuity property (2.14) with respect to µ.

Proof. For i.), even though the formulation looks rather technical, this is essentially
just the Leibniz rule. Let r ∈ R, choose corresponding seminorms q ∈ Q and q′ ∈ Q′

satisfying (2.14), and κ ∈ Nn
0 . Then we have

‖µ(F,G)‖m
′′,ρ′′

r,κ

= sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m′′(r)−ρ′′(r)|κ|)

r

(
∂|κ|µ(F,G)

∂xκ
(x)

)
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= sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m′′(r)−ρ′′(r)|κ|)

r

( ∑
ν+ν′=κ

(
κ

ν

)
µ

(
∂|ν|F

∂xν
(x),

∂|ν
′|G

∂xν′
(x)

))

≤
∑

ν+ν′=κ

(
κ

ν

)
c sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|ν|)

q

(
∂|ν|F

∂xν
(x)

)

sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m′(q′)−ρ′(q′)|ν′|)

q′
(
∂|ν
′|G

∂xν′
(x)

)
≤ 2|κ|c max

ν≤κ
‖F‖m,ρ

q,ν max
ν′≤κ
‖G‖m

′,ρ′

q′,ν′ ,

since |κ| = |ν| + |ν ′|. This shows (2.19), which implies the continuity of the map
(2.17). For ii.), it is clear that for any F ∈ Sm,ρ(Rn, V ), G ∈ Sm

′,ρ′(Rn′ ,W ), we have
µ(F,G) ∈ C∞(Rn⊕Rn′ , U), and that µ is bilinear. To prove the continuity of this map,
we have to verify the bound (2.22). The estimate necessary for this is based on the fact
that given k, k′ ∈ R, there holds for all a, b ∈ R

(1 + a2 + b2)−K ≤ (1 + a2)−k(1 + b2)−k
′

if K ≥ max{k, k′, k + k′} . (2.23)

In the situation at hand, we pick seminorms r, q, q′ satisfying (2.14), multiindices
ν ∈ Rn, ν ′ ∈ Rn′ , and set K := 1

2
(m′′(r) − ρ′′(r)|ν ⊕ ν ′|), k := 1

2
(m(q) − ρ(q)|ν|),

k′ := 1
2
(m′(q′) − ρ′(q′)|ν ′|). The assumptions on m′′, ρ′′ then guarantee that K ≥

max{k, k′, k + k′} holds, and we can use (2.23) to estimate

‖µ(F,G)‖m
′′,ρ′′

r,ν⊕ν′ = sup
x∈Rn
y∈Rn′

r(∂νx∂
ν′
y µ(F (x), G(y)))

(1 + ‖x‖2 + ‖y‖2) 1
2
(m(r)′′−ρ′′(r)|ν⊕ν′|)

≤ sup
x∈Rn
y∈Rn′

c q(∂νxF (x)) q′(∂ν
′
y G(y))

(1 + ‖x‖2) 1
2
(m(q)−ρ(q)|ν|)(1 + ‖y‖2) 1

2
(m′(q′)−ρ′(q′)|ν′|)

≤ c ‖F‖m,ρ
q,ν ‖G‖

m′,ρ′

q′,ν′ .

�

For continuous linear maps, a similar result holds.

Proposition 2.6 Let A : V −→ W be a continuous linear map between sequentially
complete locally convex spaces V,W with defining systems of seminorms Q, Q′, and let
Q be filtrating. Furthermore, let orders m and m′ and types ρ and ρ′ for Q and Q′ be
given. Suppose for every seminorm q′ ∈ Q′ we find a seminorm q ∈ Q such that

q′(Av) ≤ c q(v), m(q) ≤m′(q′), and ρ(q) ≥ ρ′(q′) (2.24)

for some c > 0 and all v ∈ V . Then pointwise evaluation of A gives a continuous linear
map

A : Sm,ρ(Rn, V ) −→ Sm
′,ρ′(Rn,W ). (2.25)
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More precisely, for every F ∈ Sm,ρ(Rn, V ) and every µ ∈ Nn
0 , we have

‖AF‖m
′,ρ′

q′,µ ≤ c ‖F‖m,ρ
q,µ . (2.26)

Proof. Note that the first condition q′(Av) ≤ c q(v) can always be satisfied since Q

was assumed to be filtrating and A is continuous. Thus assume that the other two
requirements in (2.24) are fulfilled as well. Then we have for F ∈ Sm,ρ(Rn, V )

‖AF‖m
′,ρ′

q′,µ = sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m′(q′)−ρ′(q′)|µ|)

q′
(
∂|µ|AF

∂xµ
(x)

)

≤ sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|µ|)

q′
(
A
∂|µ|F

∂xµ
(x)

)
≤ c ‖F‖m,ρ

q,µ .

Since the seminorms ‖ · ‖m
′,ρ′

q′,µ determine the Sm
′,ρ′-topology, this yields the continuity

of (2.25). �

The main application of Proposition 2.5, i.), is to multiply vector-valued symbols
with scalar symbols: Choosing one target space just to be C, with seminorms just the
absolute value, we get for every order m ∈ R and every type ρ ∈ R the space of scalar
symbols

Sm,ρ(Rn) = Sm,ρ(Rn,C). (2.27)

Note that here the order and the type are indeed just single numbers. We now formulate
two corollaries about multiplications of symbols. Their proofs follow immediately from
Proposition 2.5 and are therefore omitted.

Corollary 2.7 Let V be a sequentially complete locally convex space with a defining
system of seminorms Q.

i.) For all orders m and types ρ for Q, and all m, ρ ∈ R, the pointwise multiplication
gives a continuous bilinear map

Sm,ρ(Rn,C)× Sm,ρ(Rn, V ) −→ Sm+m,min(ρ,ρ)(Rn, V ). (2.28)

ii.) In particular, if the type ρ is bounded by ρ ∈ R, then

Sm,ρ(Rn,C)× Sm,ρ(Rn, V ) −→ Sm+m,ρ(Rn, V ) (2.29)

is a continuous bilinear map.

iii.) If m ≤ 0 then Sm,ρ(Rn,C) is a Fréchet algebra and Sm,ρ(Rn, V ) is a continuous
module over it for all bounded ρ ≤ ρ.

Corollary 2.8 Let A be a sequentially complete locally convex algebra with a defining
system of seminorms Q. Then the multiplication induces a continuous product

Sm,ρ(Rn,A)× Sm
′,ρ(Rn,A) −→ Sm+m′,ρ(Rn,A). (2.30)

In particular, for m ≤ 0 the symbols Sm,ρ(Rn,A) form a sequentially complete locally
convex algebra themselves and any Sm

′,ρ(Rn,A) is a sequentially complete locally convex
continuous module over them.
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For later applications, we also note the following simple lemma about powers of
scalar symbols.

Lemma 2.9 Let f ∈ Sm,ρ(Rn,C) be a scalar symbol of order m and type ρ with f(x) ∈
C \ [0,−∞) for all x ∈ R

n. Then for all α ∈ C with Re(α) ≥ 0 we have fα ∈
SRe(α)m,ρ(Rn,C).

Proof. Since f takes values only in the complex plane without the closed negative real
half axis, we can use the (smooth) principal branch of the logarithm to define the powers
fα = exp(α log(f)) ∈ C∞(Rn,C) for all α ∈ C. Note that we do not have to take care
of the values α ∈ N0 as these particular cases are already settled by Corollary 2.8 by
induction. By the chain rule we get

∂|µ|fα

∂xµ
=

∑
1≤k≤|µ|

ν1,...,νk∈Nn0
|ν1|+···+|νk|=|µ|

Ck,α
ν1,...,νk

fα−k
∂|ν1|f

∂xν1
· · · ∂

|νk|f

∂xνk

with some coefficients Ck,α
ν ∈ C. We first note that for fα without derivatives we get

the estimate

‖fα‖Re(α)m,ρ0 = sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
Re(α)m |fα(x)|

≤ eπ|Im(α)| sup
x∈Rn

((
1 + ‖x‖2

)−m
2 |f(x)|

)Re(α)
= eπ|Im(α)| (‖f‖m,ρ0 )

Re(α)

since for any complex number z ∈ C \ [0,−∞) we have |zα| ≤ |z|Re(α)eπ|Im(α)|, and since

Re(α) ≥ 0. Thus we need the prefactor (1 + ‖x‖2)− 1
2
Re(α)m to compensate the growth of

fα. To estimate the derivatives, we get

‖fα‖Re(α)m,ρµ

= sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(Re(α)m−ρ|µ|)

∣∣∣∣∂|µ|fα∂xµ
(x)

∣∣∣∣
≤ sup

x∈Rn

(
1 + ‖x‖2

)− 1
2
(Re(α)m−ρ|µ|) ∑

1≤k≤|µ|
ν1,...,νk∈Nn0
|ν1|+···+|νk|=|µ|

|Ck,α
ν1,...,νk

|
∣∣fα−k(x)

∣∣ ∣∣∣∣∂|ν1|f∂xν1

∣∣∣∣ · · · ∣∣∣∣∂|νk|f∂xνk

∣∣∣∣

≤
∑

1≤k≤|µ|
ν1,...,νk∈Nn0
|ν1|+···+|νk|=|µ|

|Ck,α
ν1,...,νk

| sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(Re(α)m−km) ∣∣fα−k(x)

∣∣

sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m−ρ|ν1|)

∣∣∣∣∂|ν1|f∂xν1

∣∣∣∣ · · · sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m−ρ|νk|)

∣∣∣∣∂|νk|f∂xνk

∣∣∣∣
12



≤
∑

1≤k≤|µ|
ν1,...,νk∈Nn0
|ν1|+···+|νk|=|µ|

|Ck,α
ν1,...,νk

|eπ|Im(α)| (‖f‖m,ρ0 )
Re(α)−k ‖f‖m,ρν1

· · · ‖f‖m,ρνk
,

which proves that fα ∈ SRe(α)m,ρ(Rn,C) as claimed. �

We come now to the approximation of symbols by compactly supported functions,
which will be important for our subsequent construction of an oscillatory integral. As
usual, balls in Rn will be denoted Br(0) := {x ∈ Rn : ‖x‖ ≤ r}.

Proposition 2.10 Let χ ∈ C∞0 (Rn) be a compactly supported smooth function with

χBr(0) = 1 and suppχ ⊆ BR(0), (2.31)

where 0 < r < R and let χε ∈ C∞0 (Rn) be defined by χε(x) = χ(εx) for ε > 0.

i.) One has χε − 1 ∈ S0,ρ(Rn,C) for all ρ ∈ R.

ii.) One has
lim
ε−→0

χε = 1 (2.32)

in the Sm,ρ-topology for all m > 0 and ρ ≤ 1.

iii.) For all F ∈ Sm,ρ(Rn, V ) we have

lim
ε−→0

χεF = F (2.33)

in the Sm
′,ρ′-topology for all m′ >m and ρ′ ≤ min(1,ρ).

iv.) For all m′ > m and ρ′ ≤ min(1,ρ), the compactly supported smooth func-
tions C∞0 (Rn, V ) are sequentially dense in Sm,ρ(Rn, V ) with respect to the Sm

′,ρ′-
topology.

Proof. Clearly, 1 ∈ S0,ρ(Rn,C) for all ρ ∈ R and χε ∈ C∞0 (Rn) ⊆ Sm,ρ(Rn,C) for
all m, ρ ∈ R by Proposition 2.3, i.). For the second part, we clearly have pointwise
convergence and even convergence in the C∞-topology. For µ = 0 we have

‖χε − 1‖m,ρ0 = sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
m |χε(x)− 1|

= sup
‖x‖≥ r

ε

(
1 + ‖x‖2

)− 1
2
m |χε(x)− 1|

≤ c sup
‖x‖≥ r

ε

(
1 + ‖x‖2

)− 1
2
m

= c

(
r2 + ε2

ε2

)− 1
2
m

,

where c = ‖χε − 1‖∞ < ∞ by the compact support of χε. This converges to zero since
m > 0. For µ 6= 0 we have

∂|µ|χε
∂xµ

(x) = ε|µ|
∂|µ|χ

∂xµ
(εx)

13



and hence

‖χε − 1‖m,ρµ = sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m−ρ|µ|)

∣∣∣∣∂|µ|χε∂xµ
(x)

∣∣∣∣
≤ sup

r
ε
≤‖x‖≤R

ε

(
1 + ‖x‖2

)− 1
2
(m−ρ|µ|)

ε|µ|cµ,

where cµ = ‖∂µxχε(x)‖∞ < ∞, again thanks to the compact support. Now either
m−ρ|µ| ≥ 0, then the supremum is taken at the smallest possible ‖x‖ = r

ε
, or m−ρ|µ| <

0, then the supremum is taken at the largest possible ‖x‖ = R
ε
. Thus we get in the first

case for ε ≤ 1

‖χε − 1‖m,ρµ ≤ cµε
|µ|
(
r2 + ε2

ε2

)− 1
2
(m−ρ|µ|)

≤ c′µε
m+(1−ρ)|µ|,

and in the second case we get the same estimate with a different numerical constant c′′µ
instead of cµ. For the behaviour under ε −→ 0 these factors do not play any role but the
sign of m+(1−ρ)|µ| does: If ρ > 1 then for large enough |µ| we get divergence and hence
‖χε − 1‖m,ρµ does not converge to zero. If, on the other hand ρ ≤ 1, then m+ (1− ρ)|µ|
is always strictly positive. In this case we have convergence ‖χε − 1‖m,ρµ −→ 0 for all µ.
This explains the condition ρ ≤ 1 and proves the second part. For the third part we
rely on the estimates proved in Proposition 2.5, i.): for F ∈ Sm,ρ(Rn, V ) and a fixed
seminorm q from the defining system Q we get the estimate

‖(χε − 1)F‖m
′,ρ′

q,µ ≤ 2|µ|max
ν≤µ
‖χε − 1‖m,ρν max

ν′≤µ
‖F‖m,ρ

q,ν

for every m and m′ provided m′(q) ≥ m(q) + m, and every ρ and ρ′ provided
ρ′(q) ≤ min(ρ,ρ(q)). Now from the second part we know that ‖χε − 1‖m,ρν converges
to zero whenever ρ ≤ 1 and m > 0. This means that for the fixed seminorm q we get
‖(χε − 1)F‖m

′,ρ′

q,µ −→ 0 whenever m′(q) >m(q) and ρ′(q) ≤ min(1,ρ(q)). Since this is
the condition for every q ∈ Q we get the third part. Note that we are allowed to make
the parameter m depend on q as long as we have m > 0. Thus m′(q) >m(q) does not
have to be uniformly satisfied. The last part is now clear as it suffices to take ε = 1

n
as

usual. �

As the last operation to be discussed, we consider the restriction of a symbol to a
subspace of its domain of definition. To this end, we take symbols F : Rn1 ⊕Rn2 → V
depending on two variables (x1, x2) ∈ Rn1 ⊕ Rn2 , and introduce the embeddings ιj :
R
nj → R

n1 ⊕ Rn2 , j = 1, 2, defined as ι1(x1) := (x1, 0) and ι2(x2) := (0, x2). For a
symbol F ∈ Sm,ρ(Rn1 ⊕Rn2 , V ), we write

ι∗jF := F ◦ ιj : Rnj → V , j = 1, 2 . (2.34)

Lemma 2.11 Let m,ρ be an order and a type for Q. Then the restriction maps

ι∗j : Sm,ρ(Rn1 ⊕Rn2 , V ) −→ Sm,ρ(Rnj , V ) (2.35)

are linear and continuous, j = 1, 2.
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Proof. Let F ∈ Sm,ρ(Rn1 ⊕Rn2 , V ). It is clear that ι∗jF is a smooth map from R
nj to

V , and that ι∗j is linear. For j = 1, we estimate with q ∈ Q, µ ∈ Nn1
0 ,

‖ι∗1F‖m,ρ
q,µ = sup

x1∈Rn1

q(∂µx1F (x1, 0))

(1 + ‖(x1, 0)‖2) 1
2
(m(q)−ρ(q)|µ|)

≤ sup
x∈Rn1⊕Rn2

q(∂µ⊕0x F (x))

(1 + ‖x‖2) 1
2
(m(q)−ρ(q)|µ|)

= ‖F‖m,ρ
q,µ⊕0 .

This shows that ι∗1F ∈ Sm,ρ(Rn1 , V ), and that ι∗1 is continuous. The case j = 2 is
completely analogous. �

2.2 Symbol spaces

In this subsection, we introduce various spaces of symbols of arbitrary order and a vector-
valued Schwartz space as suitable unions respectively intersections of the Sm,ρ(Rn, V ).
To show that these are intrinsic definitions, we will first discuss how our definition of
the spaces Sm,ρ(Rn, V ) depends on the choice of the defining system of seminorms Q.
To this end, we shall proceed in two steps: First we show how one can pass from an
arbitrary system to a filtrating one, then we compare two filtrating systems.

Now suppose Q is an arbitrary defining system of continuous seminorms for V . Then
we consider the larger system

Q̃ :=
{

q = max{q1, . . . , qn}
∣∣ n ∈ N and q1, . . . , qn ∈ Q

}
(2.36)

which is filtrating. Suppose now that m is an order with respect to Q. Then we want
to extend m to an order on Q̃ as follows. We define

mmax(max{q1, . . . , qn}) := max{m(q1), . . . ,m(qn)}. (2.37)

Clearly, this gives an order on Q̃ which extendsm. Analogously, for a type ρ with respect
to Q we define a type ρmin with respect to Q̃ extending ρ by taking the minimum of the
types ρ(qi) instead of the maximum.

Proposition 2.12 Let Q be a defining system of continuous seminorms on V and Q̃

the corresponding filtrating system of finite maxima. Then for every order m and every
type ρ with respect to Q and their corresponding extensions mmax and ρmin to Q̃ we have

Sm,ρ(Rn, V ) = Smmax,ρmin(Rn, V ) (2.38)

as locally convex spaces.

Proof. First let F ∈ Sm,ρ(Rn, V ) and let q1, . . . , qn ∈ Q be given. We set q :=
max{q1, . . . , qn}. For µ ∈ Nn

0 we have the estimate

‖F‖mmax,ρmin
q,µ = sup

x∈Rn

(
1 + ‖x‖2

)− 1
2
(mmax(q)−ρmin(q)|µ|) q

(
∂|µ|F

∂xµ
(x)

)
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≤
n∑
i=1

sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m(qi)−ρ(qi)|µ|) qi

(
∂|µ|F

∂xµ
(x)

)

=
n∑
i=1

‖F‖m,ρ
qi,µ

.

This shows F ∈ Smmax,ρmin(Rn, V ) as well as the continuity of the inclusion map

Sm,ρ(Rn, V ) −→ Smmax,ρmin(Rn, V ).

Conversely, let F ∈ Smmax,ρmin(Rn, V ) be given. Then F ∈ Sm,ρ(Rn, V ) since all the
seminorms ‖ · ‖m,ρ

q,µ of the Sm,ρ-topology appear also as seminorms of the Smmax,ρmin-

topology, since Q ⊆ Q̃ and the order and type are extended to the larger system of
seminorms. With respect to these seminorms ‖ · ‖m,ρ

q,µ , the reverse inclusion

Smmax,ρmin(Rn, V ) −→ Sm,ρ(Rn, V )

is even isometric and hence continuous, too. Thus we have mutually inverse continuous
inclusions proving the claim. �

Next we consider two defining systems of seminorms Q and Q′ on V where we can
assume that they are already filtrating. Thus for every q ∈ Q we find a q′ ∈ Q′ with
q ≤ c q′ for some positive c > 0, and vice versa. In this situation we have the following
statement:

Proposition 2.13 Let Q and Q′ be defining systems of seminorms for V with Q′ being
filtrating. Moreover, let m, m′ be orders and ρ,ρ′ be types for Q, Q′, respectively. If
for every q ∈ Q there exists a q′ ∈ Q′ such that

q ≤ c q′, m(q) ≥m′(q′), and ρ(q) ≤ ρ′(q′), (2.39)

then one has a continuous inclusion

Sm
′,ρ′(Rn, V ) ⊆ Sm,ρ(Rn, V ). (2.40)

Proof. Let q ∈ Q be given and choose q′ according to (2.39). Then for every µ ∈ Nn
0 we

have

‖F‖m,ρ
q,µ = sup

x∈Rn

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|µ|)

q

(
∂|µ|F

∂xµ
(x)

)

≤ c sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m′(q′)−ρ′(q′)|µ|)

q′
(
∂|µ|F

∂xµ
(x)

)
= c ‖F‖m

′,ρ′

q′,µ ,

which shows the claim. �
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Corollary 2.14 Let Q and Q′ be defining systems of continuous seminorms on V . More-
over, let m′ and ρ′ be an order and a type for Q′. Then there exists an order m and a
type ρ for Q such that

Sm
′,ρ′(Rn, V ) ⊆ Sm,ρ(Rn, V ) (2.41)

is continuously included. If in addition m′ or ρ′ are bounded then m and ρ can be
chosen to satisfy the same bounds, respectively.

Proof. By Proposition 2.12 we can pass to a filtrating system without changing the
symbol space on the left hand side. Thus we can assume that Q′ is already filtrating
without restriction. Let q ∈ Q, then we fix a particular choice q′(q) ∈ Q′ with q ≤ c q′

for some appropriate c > 0. This defines a map Q −→ Q′, existing thanks to the fact
that Q′ is filtrating. Now we define m(q) := m′(q′(q)) and ρ(q) := ρ(q′(q)). Then
clearly the condition (2.39) from Proposition 2.13 is satisfied and we get (2.41). The
statement about the bounds is then clear. �

Corollary 2.15 Let Q and Q′ be two defining systems of seminorms for V and let
F ∈ C∞(Rn, V ) be a smooth function. Then F is a symbol of some (bounded) order
m and some (bounded) type ρ for Q iff F is a symbol of some (bounded) order m′ and
some (bounded) type ρ′ for Q′ (and the same bounds).

Proof. By Proposition 2.12 we can assume to have filtrating systems from the beginning.
Since the extension of the order and the type according to that Proposition clearly
preserves the bounds, Corollary 2.14 can be applied in both directions. �

We can now use the last corollaries to speak about the space of all symbols: there
are two alternatives whether or not we allow for bounded orders only:

Definition 2.16 Let V be a sequentially complete locally convex space. Then we define
for a given type ρ for a defining system of seminorms Q

S∞,ρ(Rn, V ) :=
⋃

m bounded

Sm,ρ(Rn, V ) (2.42)

and
S∞+,ρ(Rn, V ) :=

⋃
m

Sm,ρ(Rn, V ). (2.43)

Moreover, we set

S∞(Rn, V ) := S∞,1(Rn, V ) , S∞+(Rn, V ) := S∞+,1(Rn, V ) (2.44)

and
S(Rn, V ) :=

⋃
−1<ρ≤1

S∞+,ρ(Rn, V ) . (2.45)

It follows that for another defining system of seminorms Q′ we get the same spaces
S∞(Rn, V ), S∞+(Rn, V ), S(Rn, V ), which are therefore intrinsically defined. The space
S(Rn, V ) will be relevant in the context of oscillatory integrals, presented in Section 3.
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Note that for a Banach space V with Q consisting just of the norm itself we have
S∞,ρ(Rn, V ) = S∞+,ρ(Rn, V ) for all types ρ ∈ R. However, in general we have a proper
inclusion

S∞,ρ(Rn, V ) ⊂ S∞+,ρ(Rn, V ). (2.46)

Also the intersection of all the symbol spaces is of interest: here we get an analog of
the usual Schwartz space. First we note the following simple facts:

Lemma 2.17 Let V be a sequentially complete locally convex space and F ∈ C∞(Rn, V ).
Then the following statements are equivalent:

i.) For all continuous seminorms q of a defining system Q, for all µ ∈ Nn
0 and all

m ∈ N0 one has

qm,µ(F ) = sup
x∈Rn

(
1 + ‖x‖2

)m
2 q

(
∂|µ|F

∂xµ
(x)

)
<∞. (2.47)

ii.) For all orders m and all types ρ for a given defining system Q of continuous
seminorms one has F ∈ Sm,ρ(Rn, V ).

iii.) For all orders m and one type ρ for a given defining system Q of continuous
seminorms one has F ∈ Sm,ρ(Rn, V ).

Proof. First we note that if i.) holds for a defining system of seminorms Q then it also
holds for all continuous seminorms of V . This is clear. Thus assume i.) and let Q be a
defining system of seminorms. Moreover, fix an order m and a type ρ for this system
Q. Then for µ ∈ Nn

0 we have

‖F‖m,ρ
q,µ = sup

x∈Rn

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|µ|)

q

(
∂|µ|F

∂xµ
(x)

)
≤ qm,µ(F ),

withm being any integer larger than−m(q)+ρ(q)|µ|. This shows that F ∈ Sm,ρ(Rn, V ).
The implication ii.) ⇒ iii.) is trivial. Thus assume iii.) and hence let F ∈ Sm,ρ(Rn, V )
for all orders m and a fixed type ρ. Then let m ∈ N0 and µ ∈ Nn

0 be given. We have

qm,µ(F ) = sup
x∈Rn

(
1 + ‖x‖2

)m
2 q

(
∂|µ|F

∂xµ
(x)

)

≤ sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|µ|)

q

(
∂|µ|F

∂xµ
(x)

)
= ‖F‖m,ρ

q,µ ,

where we have to choose an order m such that m(q) − ρ(q)|µ| ≤ −m. This is clearly
possible as we can e.g. take the constant order with m = −m + ρ(q)|µ|. Thus i.)
follows. �

Thus for the intersection of all symbol spaces the type ρ does not play any role any
more. Also the dependence on the chosen system of seminorms Q disappears. This
motivates the following definition:
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Definition 2.18 (Vector-valued Schwartz space) Let V be a sequentially complete
locally convex space. Then we define the symbols of order −∞ by

S−∞(Rn, V ) :=
⋂
m,ρ

Sm,ρ(Rn, V ). (2.48)

We also use the notation
S (Rn, V ) := S−∞(Rn, V ) (2.49)

and call S (Rn, V ) the space of V -valued Schwartz functions.

Clearly, the V -valued Schwartz functions are a straightforward generalization of the
scalar case. The Schwartz space S (Rn, V ) will always be endowed with the locally
convex topology determined by the seminorms qm,µ as in (2.47). We call this the S−∞-
or the Schwartz topology of S (Rn, V ). We collect now some easy properties of the
Schwartz space:

Proposition 2.19 Let V be a sequentially complete locally convex space with a defining
system of seminorms Q.

i.) The Schwartz space S (Rn, V ) is sequentially complete and even complete when V
is complete.

ii.) We have continuous inclusions

C∞0 (Rn, V ) −→ S (Rn, V ) −→ Sm,ρ(Rn, V ) (2.50)

for all orders m and all types ρ for Q.

iii.) C∞0 (Rn, V ) is sequentially dense in S (Rn, V ) and S (Rn, V ) is sequentially dense
in Sm,ρ(Rn, V ) in the Sm

′,ρ′-topology whenever m′ >m and ρ′ ≤ min(1,ρ).

iv.) The partial derivatives are continuous linear maps

∂|ν|

∂xν
: S (Rn, V ) −→ S (Rn, V ) (2.51)

satisfying the estimate (equality)

qm,µ

(
∂|ν|F

∂xν

)
= qm,µ+ν(F ). (2.52)

v.) If W and U are two other sequentially complete locally convex spaces and µ : V ×
W −→ U is a continuous bilinear map then it induces continuous bilinear maps

µ : S (Rn, V )×S (Rn,W ) −→ S (Rn, U), (2.53)

µ : Sm,ρ(Rn, V )×S (Rn,W ) −→ S (Rn, U), (2.54)

and
µ : S (Rn, V )× Sm

′,ρ′(Rn,W ) −→ S (Rn, U) (2.55)

for all orders m and types ρ for Q and all orders m′ and types ρ′ for some defining
system of seminorms Q′ for W .
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vi.) For all orders m ∈ R and types ρ ∈ R the pointwise multiplication

Sm,ρ(Rn,C)×S (Rn, V ) −→ S (Rn, V ) (2.56)

is a continuous bilinear map.

Proof. The first statement can most easily be checked using the explicit seminorms qm,µ
in the same spirit as the proof of Proposition 2.3, iii.). Then also the second part is
clear since we get a continuous inclusion of C∞K (Rn, V ) into S (Rn, V ) with estimates
like

qm,µ(F ) = ‖F‖m,0q,µ ≤ cK pK,|µ|,q(F )

as in the proof of Proposition 2.3, i.), for every compact subset K ⊆ Rn. The second
inclusion is continuous thanks to the estimate ‖F‖m,ρ

q,µ (F ) ≤ qm,µ(F ) form an integer be-
ing at least −m(q)+ρ(q)|µ|, which we have established in the proof of Lemma 2.17. The
density of C∞0 (Rn, V ) in S (Rn, V ) is checked directly as in the scalar case. The second
statement of part iii.) is clear as C∞0 (Rn, V ) has this property by Proposition 2.10, iv.).
The fourth part is clear since the estimate (2.52) is obvious by definition. For part v.)
we first consider the case (2.54). Thus let F ∈ Sm,ρ(Rn, V ) and G ∈ S (Rn,W ) be
given. The continuity of µ means that for a continuous seminorm r on U we find q ∈ Q

and a continuous seminorm q′ on W such that

r(µ(v, w)) ≤ q(v) q′(w)

for all v ∈ V and w ∈ W since we can assume that the defining system Q on V is
already filtrating by Proposition 2.12. Then for m ∈ N0 and κ ∈ Nn

0 we estimate using
the Leibniz rule

rm,κ(µ(F,G)) = sup
x∈Rn

(
1 + ‖x‖2

)m
2 r

(
∂|κ|µ(F,G)

∂xκ
(x)

)

= sup
x∈Rn

(
1 + ‖x‖2

)m
2 r

( ∑
ν+ν′=κ

(
κ

ν

)
µ

(
∂|ν|F

∂xν
(x),

∂|ν
′|G

∂xν′
(x)

))

≤ 2|κ| sup
x∈Rn

∑
ν+ν′=κ

(
1 + ‖x‖2

)m
2 q

(
∂|ν|F

∂xν
(x)

)
q′
(
∂|ν
′|G

∂xν′
(x)

)

= 2|κ| sup
x∈Rn

∑
ν+ν′=κ

(
1 + ‖x‖2

)− 1
2
(m(q)−ρ(q)|ν|)

q

(
∂|ν|F

∂xν
(x)

)
(
1 + ‖x‖2

)m
2
+ 1

2
(m(q)−ρ(q)|ν|)

q′
(
∂|ν
′|G

∂xν′
(x)

)
≤ 2|κ|

∑
ν+ν′=κ

‖F‖m,ρ
q,ν q′m′,ν′(G),

with m′ = m+m(q)− ρ(q)|ν|. This shows the continuity of (2.54) and (2.55) is anal-
ogous. But then (2.53) follows as well since S (Rn, V ) −→ Sm,ρ(Rn, V ) is continuous.
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In fact, one can also estimate the bilinear expression directly. The last part is then
clear. �

Corollary 2.20 Let A be a (sequentially) complete locally convex algebra and let M be
a (sequentially) complete locally convex topological module over A. Then S (Rn,A) is a
(sequentially) complete locally convex algebra and S (Rn,M) is a (sequentially) complete
locally convex topological module over S (Rn,A).

2.3 Affine symmetries and symbol-valued symbols

In this subsection we investigate the action of the affine group of Rn on the symbol
spaces. For A ∈ GLn(R) and a translation y ∈ R

n, we denote their pullback by
(A∗F )(x) = F (Ax) and (τ ∗yF )(x) = F (x+y) as usual. We start with the following basic
observations:

Lemma 2.21 Let q be a continuous seminorm on V and m, ρ ∈ R. Then for F ∈
C∞(Rn, V ) we have for all µ ∈ Nn

0 and all A ∈ GLn(R)

‖A∗F‖m,ρq,µ ≤ cm,ρµ (A)
∑
ν∈Nn0
|ν|=|µ|

‖F‖m,ρq,ν (2.57)

with some cm,ρµ (A) > 0 depending continuously on A and satisfying cm,ρµ (1) = 1.

Proof. As usual, this is to be understood as an inequality in [0,+∞]. First we note that
with the operator norm of A we have

q

(
∂|µ|(A∗F )

∂xµ
(x)

)
≤ ‖A‖|µ|

∑
ν∈Nn0
|ν|=|µ|

q

(
∂|ν|F

∂xν
(Ax)

)

for all x ∈ Rn by the chain rule. Next we recall that

1

‖A‖
‖y‖ ≤

∥∥A−1y∥∥ ≤ ∥∥A−1∥∥ ‖y‖
for an invertible A ∈ GLn(R). We have to distinguish a few cases. Depending on the
sign of m− ρ|µ| we first get

(
1 +

∥∥A−1y∥∥2)− 1
2
(m−ρ|µ|)

≤


(

1 + ‖A−1‖2 ‖y‖2
)− 1

2
(m−ρ|µ|)

for m− ρ|µ| < 0(
1 + ‖A‖−2 ‖y‖2

)− 1
2
(m−ρ|µ|)

for m− ρ|µ| ≥ 0.

In the case ‖A−1‖ ≤ 1 and hence ‖A‖ ≥ 1 we can continue the estimate by

(
1 +

∥∥A−1y∥∥2)− 1
2
(m−ρ|µ|)

≤


(
1 + ‖y‖2

)− 1
2
(m−ρ|µ|)

for m− ρ|µ| < 0

‖A‖m−ρ|µ|
(
1 + ‖y‖2

)− 1
2
(m−ρ|µ|)

for m− ρ|µ| ≥ 0.
(∗)
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Conversely, in the case ‖A−1‖ ≥ 1 we get(
1 +

∥∥A−1y∥∥2)− 1
2
(m−ρ|µ|)

≤
∥∥A−1∥∥−m+ρ|µ| (

1 + ‖y‖2
)− 1

2
(m−ρ|µ|)

(∗∗)

for the case m − ρ|µ| < 0. For m − ρ|µ| ≥ 0 we still have to distinguish the two
possibilities ‖A‖ ≤ 1 and ‖A‖ ≥ 1. For ‖A‖ ≤ 1 we have(

1 +
∥∥A−1y∥∥2)− 1

2
(m−ρ|µ|)

≤
(
1 + ‖y‖2

)− 1
2
(m−ρ|µ|)

, (?)

and in the case ‖A‖ > 1 we finally get(
1 +

∥∥A−1y∥∥2)− 1
2
(m−ρ|µ|)

≤ ‖A‖m−ρ|µ|
(
1 + ‖y‖2

)− 1
2
(m−ρ|µ|)

. (??)

Combining the four cases (∗), (∗∗), (?), and (??) we get the estimate

‖A‖|µ|
(

1 +
∥∥A−1y∥∥2)− 1

2
(m−ρ|µ|)

≤ cm,ρµ (A)
(
1 + ‖y‖2

)− 1
2
(m−ρ|µ|)

where
cm,ρµ (A) = ‖A‖|µ|max

{
1, ‖A‖m−ρ|µ| ,

∥∥A−1∥∥−m+ρ|µ|
}
.

Since A 7→ A−1 is continuous and since the operator norm is continuous as well this
constant depends continuously on A and clearly satisfies cm,ρµ (1) = 1. It is now easy to
see that we get the estimate (2.57). �

Lemma 2.22 Let q be a continuous seminorm on V and m, ρ ∈ R. Then for F ∈
C∞(Rn, V ) we have for all µ ∈ Nn

0 and all y ∈ Rn∥∥τ ∗yF∥∥m,ρq,µ
≤ cm,ρµ (y) ‖F‖m,ρq,µ , (2.58)

with some positive cm,ρµ (y) > 0 being a scalar symbol cm,ρµ ∈ S|m−ρ|µ||,1(Rn).

Proof. We proceed similar as in the previous lemma. First it is clear that

q

(
∂|µ|(τ ∗yF )

∂xµ
(x)

)
= q

(
∂|µ|F

∂xµ
(x+ y)

)
(∗)

by the chain rule. For the prefactor in the definition of the seminorm we first consider
the following elementary estimate: There is a constant c > 0 such that for all x, y ≥ 0
we have

1

1 + (x− y)2
≤ c

1 + y2

1 + x2
. (∗∗)

We now use this inequality to consider first the case m− ρ|µ| ≥ 0. There we have(
1 + ‖x− y‖2

)− 1
2
(m−ρ|µ|) ≤ 1(

1 + |‖x‖ − ‖y‖|2
) 1

2
(m−ρ|µ|)
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(∗∗)
≤ c

1
2
(m−ρ|µ|)

(
1 + ‖y‖2

1 + ‖x‖2

) 1
2
(m−ρ|µ|)

.

This gives the estimate

∥∥τ ∗yF∥∥m,ρq,µ

(∗)
= sup

x∈Rn

(
1 + ‖x‖2

)− 1
2
(m−ρ|µ|)

q

(
∂|µ|F

∂xµ
(x+ y)

)

= sup
x∈Rn

(
1 + ‖x− y‖2

)− 1
2
(m−ρ|µ|)

q

(
∂|µ|F

∂xµ
(x)

)

≤ c
1
2
(m−ρ|µ|) sup

x∈Rn

(
1 + ‖y‖2

1 + ‖x‖2

) 1
2
(m−ρ|µ|)

q

(
∂|µ|F

∂xµ
(x)

)

= c
1
2
(m−ρ|µ|) (1 + ‖y‖2

) 1
2
(m−ρ|µ|) ‖F‖m,ρq,µ .

The case m− ρ|µ| < 0 is even simpler. Here we have −1
2
(m− ρ|µ|) ≥ 0 and hence

(
1 + ‖x− y‖2

)− 1
2
(m−ρ|µ|) ≤

(
1 + 2 ‖x‖2 + 2 ‖y‖2

)− 1
2
(m−ρ|µ|)

≤ 2−
1
2
(m−ρ|µ|) (1 + ‖x‖2 + ‖y‖2

)− 1
2
(m−ρ|µ|)

≤ 2−
1
2
(m−ρ|µ|) (1 + ‖x‖2

)− 1
2
(m−ρ|µ|) (

1 + ‖y‖2
)− 1

2
(m−ρ|µ|)

.

By an analogous argument as for the previous case this results in the estimate∥∥τ ∗yF∥∥m,ρq,µ
≤ 2−

1
2
(m−ρ|µ|) (1 + ‖y‖2

)− 1
2
(m−ρ|µ|) ‖F‖m,ρq,µ .

So for each m, ρ ∈ R, µ ∈ Nn
0 , we find a constant Cm,ρ

µ > 0 such that ‖τ ∗yF‖m,ρq,µ ≤
Cm,ρ
µ (1 + ‖y‖2) 1

2
|m−ρ|µ|| ‖F‖m,ρq,µ for all y ∈ R

n. As the function y 7→ 1 + ‖y‖2 is

clearly in S2,1(Rn,C), an application of Lemma 2.9 yields y 7→ (1 + ‖y‖2) 1
2
|m−ρ|µ|| ∈

S|m−ρ|µ||,1(Rn,C), and the proof is finished. �

Remark 2.23 Note that for the translations τy the pre-factor cm,ρµ (y) in (2.58) is always
a symbol of non-negative order, even if m−ρ|µ| was negative. Thus the bounds in (2.58)
typically grow with y and are also growing with increasing differentiations µ unless ρ = 0.

As an easy consequence of the two lemmas we get the affine invariance of the symbol
spaces:

Proposition 2.24 Let V be a sequentially complete locally convex space and Q a defin-
ing system of seminorms. Moreover, let m and ρ be an order and a type for Q. Then
the affine group GLn(R) nRn of Rn acts on the symbols Sm,ρ(Rn, V ) via pull-backs by
continuous endomorphisms.
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Proof. The pull-backs with A ∈ GLn(R) or with a translation by y ∈ R
n map

Sm,ρ(Rn, V ) continuously into itself according to Lemma 2.21 and Lemma 2.22, re-
spectively. The fact that this gives a (right) group action is clear. �

In a next step we want to refine this statement for the translations: we want to show
that the map y 7→ τ ∗yF is actually smooth. We begin with the following observation:

Lemma 2.25 Let F ∈ Sm,ρ(Rn, V ). Then the map

R
n 3 y 7→ τ ∗yF ∈ Sm,ρ(Rn, V ) (2.59)

is continuous at zero provided ρ ≥ 0.

Proof. We have to show that τ ∗yF −→ F in the Sm,ρ-topology for y −→ 0. Let x ∈ Rn

be given. Then we have for y ∈ Rn and q ∈ Q by virtue of the mean value theorem

q

(
∂|µ|(τ ∗yF )

∂xµ
(x)− ∂|µ|F

∂xµ
(x)

)
= q

(∫ 1

0

(
∂

∂xi
∂|µ|F

∂xµ

)
(x+ ty) d tyi

)

≤
√
n sup

t∈[0,1]
i=1,...,n

q

((
∂

∂xi
∂|µ|F

∂xµ

)
(x+ ty)

)
‖y‖ . (∗)

Now we use the fact that F is a symbol. This means that the (µ + ei)-th derivative of
F satisfies

q

((
∂

∂xi
∂|µ|F

∂xµ

)
(x+ ty)

)
≤
(
1 + ‖x+ ty‖2

) 1
2
(m−ρ|µ|−ρ) ‖F‖m,ρq,µ+ei

, (∗∗)

where for abbreviation we have set m = m(q) and ρ = ρ(q). Then we get∥∥τ ∗yF − F∥∥m,ρ

q,µ

= sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m−ρ|µ|)

q

(
∂|µ|(τ ∗yF )

∂xµ
(x)− ∂|µ|F

∂xµ
(x)

)
(∗),(∗∗)
≤

√
n ‖y‖ sup

x∈Rn
t∈[0,1]
i=1,...,n

(
1 + ‖x‖2

)− 1
2
(m−ρ|µ|) (

1 + ‖x+ ty‖2
) 1

2
(m−ρ|µ|−ρ) ‖F‖m,ρ

q,µ+ei

=
√
n ‖y‖ sup

x∈Rn
t∈[0,1]
i=1,...,n

(
1 + ‖x− ty‖2

)− 1
2
(m−ρ|µ|) (

1 + ‖x‖2
) 1

2
(m−ρ|µ|−ρ) ‖F‖m,ρ

q,µ+ei
.

We can again estimate the first factor by the same techniques as in the Lemma 2.22:
we get a constant c (depending on m, ρ, and µ but not on ty or x) such that we can
continue our estimate and get∥∥τ ∗yF − F∥∥m,ρ

q,µ
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≤ c ‖y‖ sup
x∈Rn
t∈[0,1]
i=1,...,n

(
1 + ‖ty‖2

) 1
2
|m−ρ|µ|| (

1 + ‖x‖2
)− 1

2
(m−ρ|µ|)+ 1

2
(m−ρ|µ|−ρ) ‖F‖m,ρ

q,µ+ei

≤ c ‖y‖
(
1 + ‖y‖2

) 1
2
|m−ρ|µ||

sup
x∈Rn

(
1 + ‖x‖2

)− ρ
2 max
i=1,...,n

‖F‖m,ρ
q,µ+ei

.

Now if ρ ≥ 0 then the supremum over all x ∈ Rn exists and hence we get an estimate
of the form ∥∥τ ∗yF − F∥∥m,ρ

q,µ
≤ c′ ‖y‖

(
1 + ‖y‖2

) 1
2
|m−ρ|µ||

,

from which the continuity at y = 0 follows. �

Lemma 2.26 Let F ∈ Sm,ρ(Rn, V ) be given with ρ ≥ 0. Then we have

lim
ε−→0

τ ∗εeiF − F
ε

=
∂F

∂xi
(2.60)

in the Sm,ρ-topology for all i = 1, . . . , n.

Proof. We proceed analogously to the continuity statement. Let again q ∈ Q and set
m = m(q) and ρ = ρ(q) for abbreviation. First we note that for all x ∈ Rn and µ ∈ Nn

0

we have by repeated use of the mean value theorem

q

(
1

ε

(
∂|µ|(τ ∗εeiF )

∂xµ
(x)− ∂|µ|F

∂xµ
(x)

)
− ∂

∂xi
∂|µ|F

∂xµ
(x)

)

= q

(
1

ε

(
∂|µ|F

∂xµ
(x+ εei)−

∂|µ|F

∂xµ
(x)

)
− ∂

∂xi
∂|µ|F

∂xµ
(x)

)

= q

(∫ 1

0

∂

∂xi
∂|µ|F

∂xµ
(x+ tεei) d t− ∂

∂xi
∂|µ|F

∂xµ
(x)

)

= q

(∫ 1

0

∫ 1

0

∂

∂xi
∂

∂xi
∂|µ|F

∂xµ
(x+ tsεei)tε d s d t

)

≤ ε sup
s∈[0,1]

q

(
∂2

∂(xi)2
∂|µ|F

∂xµ
(x+ sεei)

)

≤ ε sup
s∈[0,1]

(
1 + ‖x+ sεei‖2

) 1
2
(m−ρ|µ|−2ρ) ‖F‖m,ρ

q,µ+2ei
,

since by assumption F ∈ Sm,ρ(Rn, V ). Thus we get∥∥∥∥1

ε

(
τ ∗εeiF − F

)
− ∂F

∂xi

∥∥∥∥m,ρ

q,µ

= sup
x∈Rn

(
1 + ‖x‖2

)− 1
2
(m−ρ|µ|)

q

(
1

ε

(
∂|µ|(τ ∗εeiF )

∂xµ
(x)− ∂|µ|F

∂xµ
(x)

)
− ∂|µ|

∂xµ
∂F

∂xi
(x)

)
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≤ ε sup
x∈Rn
s∈[0,1]

(
1 + ‖x‖2

)− 1
2
(m−ρ|µ|) (

1 + ‖x+ sεei‖2
) 1

2
(m−ρ|µ|−2ρ) ‖F‖m,ρ

q,µ+2ei

= ε sup
x∈Rn
s∈[0,1]

(
1 + ‖x− sεei‖2

)− 1
2
(m−ρ|µ|) (

1 + ‖x‖2
) 1

2
(m−ρ|µ|−2ρ) ‖F‖m,ρ

q,µ+2ei

≤ cε sup
x∈Rn
s∈[0,1]

(
1 + ‖sεei‖2

) 1
2
|m−ρ|µ|| (

1 + ‖x‖2
)− 1

2
(m−ρ|µ|)+ 1

2
(m−ρ|µ|−2ρ) ‖F‖m,ρ

q,µ+2ei

= cε(1 + ε2)
1
2
|m−ρ|µ|| sup

x∈Rn

(
1 + ‖x‖2

)−ρ ‖F‖m,ρ
q,µ+2ei

.

Using again ρ ≥ 0 shows that the remaining supremum is finite. Thanks to the pre-
factor ε we get the desired limit (2.60). �

These two lemmas are now enough to conclude the following smoothness statement
of the action of the translations:

Proposition 2.27 Let V be a sequentially complete locally convex space and let Q be a
defining system of seminorms for V . Let m and ρ be an order and a type for Q and
assume ρ ≥ 0. Then the action τ of Rn on Sm,ρ(Rn, V ) by translations is smooth, i.e.
for every F ∈ Sm,ρ(Rn, V ) the map τ(F ) : y 7→ τ ∗yF is a smooth map. The derivatives
are explicitly given by

∂|µ|

∂yµ
τ ∗yF = τ ∗y

∂|µ|F

∂xµ
. (2.61)

Proof. This is a general argument about group actions of Lie groups: We know already
that τ(F ) is continuous at y = 0 by Lemma 2.25. Moreover, every map τ ∗y is continuous
by Lemma 2.22. Thus we have by the group action property

lim
y−→y′

τ ∗yF = lim
y−→0

τ ∗y′+yF = lim
y−→0

τ ∗y τ
∗
y′F = τ ∗y′F

in the Sm,ρ-topology since we have continuity at zero. This shows continuity everywhere.
Moreover, by the same argument

lim
ε−→0

τ ∗y+εeiF − τ
∗
yF

ε
= lim

ε−→0
τ ∗y
τ ∗εeiF − F

ε
= τ ∗y lim

ε−→0

τ ∗εeiF − F
ε

= τ ∗y
∂F

∂xi
,

using Lemma 2.26 and the continuity of τ ∗y . This shows that τ(F ) has first partial

derivatives everywhere given as in (2.61). Now ∂F
∂xi
∈ Sm−ρ,ρ(Rn, V ) ⊆ Sm,ρ(Rn, V )

thanks to ρ ≥ 0 and Proposition 2.3, iv.) as well as Proposition 2.4. Thus the partial
derivatives ∂

∂yi
τ(F ) = τ( ∂F

∂xi
) are again of the form as we started with. Hence they are

continuous and thus τ(F ) is C 1. This allows to iterate the above argument finishing the
proof. �

As a first application of the affine invariance of the spaces Sm,ρ(Rn, V ) we get the
following generalization of the approximation from Proposition 2.10, iii.).
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Corollary 2.28 Let χ ∈ C∞0 (Rn) satisfy χ
∣∣
Br(0)

= 1 for some r > 0. Consider τ ∗yχε
for ε > 0 and y ∈ Rn where as usual χε(x) = χ(εx). Then for every F ∈ Sm,ρ(Rn, V )
we have

lim
ε−→0

(τ ∗yχε)F = F (2.62)

in the Sm
′,ρ′(Rn, V )-topology provided ρ′ ≤ min(1, ρ) and m′ >m.

Proof. We have (τ ∗yχε)F = τ ∗y (χετ−yF ) and then the continuity of τ ∗y according to
Proposition 2.24 allows to exchange τ ∗y with the limit. Then the result follows from
Proposition 2.10, iii.). �

The smoothness of the translations also allows to consider symbols taking values in
other symbol spaces, as we shall do now. Recall that given an order m and a type ρ for
a defining system of seminorms Q on V , the symbol space Sm,ρ(Rn, V ) is a sequentially
complete locally convex space (Proposition 2.3, iii.)), which can therefore be used as a
target space instead of V . To define symbols taking values in it, we first have to specify
an order m̂ and a type ρ̂ on the seminorms ‖ · ‖m(q),ρ(q)

q,µ generating the topology of
Sm,ρ(Rn, V ). For q ∈ Q and µ ∈ Nn

0 , we put

m̂(‖ · ‖m(q),ρ(q)
q,µ ) := max{0, m(q)}, ρ̂(‖ · ‖m(q),ρ(q)

q,µ ) := ρ(q) . (2.63)

Proposition 2.29 Let V be a sequentially complete locally convex space with defining
system of seminorms Q, and let m be an order and ρ ≥ 0 a positive type for Q. Moreover,
let F ∈ Sm,ρ(Rn1 ⊕Rn2 , V ) be given. Then

F1 : Rn1 → Sm,ρ(Rn2 , V ) , F1(x1) : x2 7→ F (x1, x2) (2.64)

is a symbol in Sm̂,ρ̂(Rn1 , Sm,ρ(Rn2 , V )) of order m̂ and type ρ̂ (2.63), and the map

Sm,ρ(Rn1 ⊕Rn2 , V ) −→ Sm̂,ρ̂(Rn1 , Sm,ρ(Rn2 , V )) (2.65)

F 7−→ F1 (2.66)

is linear and continuous. Explicitly, one has the bound

‖F1‖m̂,ρ̂

‖·‖m,ρ
q,µ ,ν

≤ ‖F‖m,ρ
q,ν⊕µ (2.67)

for q ∈ Q, ν ∈ Nn1
0 , µ ∈ Nn2

0 . Completely analogous statements hold for the map

F2 : Rn2 → Sm,ρ(Rn1 , V ) , F2(x2) : x1 7→ F (x1, x2) . (2.68)

Proof. In terms of the embedding ι2 : Rn2 → R
n1 ⊕Rn2 , ι2(x2) := (0, x2), and the pre-

viously discussed translations τ , the map F1 reads F1(x1) = ι∗2(τ
∗
x1⊕ 0F ). But according

to Proposition 2.27, x1 7→ τ ∗x1⊕ 0F is a smooth map from R
n1 to Sm,ρ(Rn1 ⊕ Rn2 , V ),

and according to Lemma 2.11, ι∗2 : Sm,ρ(Rn1 ⊕ Rn2 , V ) → Sm,ρ(Rn2 , V ) is linear and
continuous. Hence F1 : Rn1 → Sm,ρ(Rn2 , V ) is smooth. Since F 7→ F1 is clearly linear,
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it only remains to verify the estimate (2.67). To this end, let q ∈ Q, ν ∈ Nn1
0 , µ ∈ Nn2

0 ,
and put q̂ := ‖ · ‖m,ρ

q,µ for short. The seminorm in question is

‖F1‖m̂,ρ̂
q̂,ν = sup

x1∈Rn1

‖∂νx1F1(x1)‖m,ρ
q,µ

(1 + ‖x1‖2)
1
2
(m̂(q̂)−ρ̂(q̂)|ν|)

= sup
x1∈Rn1

1

(1 + ‖x1‖2)
1
2
(m̂(q̂)−ρ̂(q̂)|ν|)

sup
x2∈Rn2

q(∂µx2∂
ν
x1
F1(x1)(x2))

(1 + ‖x2‖2)
1
2
(m(q)−ρ(q)|µ|)

.

Note that by definition of m̂, ρ̂, the powers k := −1
2
(m̂(q̂) − ρ(q)|ν|) and k′ :=

−1
2
(m(q)− ρ(q)|µ|) satisfy max{k, k′, k + k′} ≤ K with K := −1

2
(m(q)− ρ(q)|ν ⊕ µ|)

for all µ, ν. Hence we can use the inequality (2.23) to estimate

‖F1‖m̂,ρ̂
q̂,ν ≤ sup

x1∈R
n1

x2∈R
n2

q(∂ν⊕µF (x1, x2))

(1 + ‖x1‖2 + ‖x2‖2)
1
2
(m(q)−ρ(q)|ν⊕µ|)

= ‖F‖m,ρ
q,ν⊕µ .

This establishes (2.67) and thus in particular the continuity of F 7→ F1. The arguments
for F2 are completely analogous. �

3 Oscillatory integrals for vector-valued symbols

3.1 Construction of the integral map

We now come to the definition of oscillatory integrals of symbols. Again, we proceed in
close analogy to the scalar case, see [21, Sect. 7.8] as well as [20]. The essential idea is
to use the Riemann integral for compactly supported smooth functions and show that
it enjoys a remarkable continuity property with respect to the symbol topologies. We
are here not interested in the most general case, where oscillatory integrals are used to
define maps from test function spaces to distributions, as discussed in [21, Sect. 7.8].
Instead we are just interested in the values of the oscillatory integrals per se. To this
end, we endow R

n with a non-degenerate bilinear form 〈 · , · 〉. Then we consider for
F ∈ C0(R

n, V ) the integral with an oscillatory phase

I0(F ) :=
1

(2π)n

∫
R2n

dp dx ei〈p,x〉F (x, p) , (3.1)

which is a well-defined Riemann integral thanks to the continuity of the integrand and
the compact support of F . The integral defines a linear map

I0 : C0(R
2n, V ) −→ V, (3.2)

which is continuous in the C0-topology. Since the C0-topology is coarser than every
C k
0 -topology for k ∈ N0 ∪ {+∞}, we see that for all k we have a continuous map

I0 : C k
0 (R2n, V ) −→ V. (3.3)
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Up to now, we have not used any particular properties of the phase function besides its
continuity. However, it turns out that the continuity with respect to the C k

0 -topologies
is not the right one to extend I0 to the symbol spaces.

Instead we have to show the continuity of I0 with respect to some appropriate Sm,ρ-
topology, and this step will make use of more specific properties of the phase function.
We begin with the following preparations. Consider the polynomial

P (x) := (i+ x1) · · · (i+ xn) (3.4)

on Rn which is clearly of degree n and hence a scalar symbol P ∈ Sn,1(Rn,C).
Since each factor (i+ xk) is non-vanishing, we can define arbitrary powers (i+ xk)

s

for s ∈ Z, which are symbols of order s. For s ≥ 0, this follows from Lemma 2.9, and for
s < 0 by explicit differentiation. Note that given a symbol F ∈ Sm,ρ(R2n, V ) of some
order m and type ρ ≤ 1, the function

R
2n 3 (x, p) 7→ P s(x)P s(p)F (x, p) ∈ V (3.5)

is a symbol of order m + 2sn and type ρ. This follows directly by application of
Corollary 2.7, i.), since (x, p) 7→ P s(x)P s(p) is of order 2sn and type 1, and ρ ≤ 1 by
assumption.

We also note the well-known fact that given s ∈ N0, there exists a differential
operator

Qs =
∑
|µ|,|ν|≤s

aµνs
∂|µ|

∂xµ
∂|ν|

∂pν
(3.6)

with constant coefficients aµνs ∈ C such that

Qse
i〈p,x〉 = P s(x)P s(p)ei〈p,x〉 . (3.7)

After these preparatory remarks, we now derive the crucial estimate of the integral
I0 with respect to the symbol topologies. The proof is based on the usual technique of
converting differentiability properties of the integrand to damping factors by integration
by parts against ei〈p,x〉. As shown below, for this technique to work we only have to make
a restriction on the type, but not on the order.

Lemma 3.1 Let Q be a defining system of seminorms for V , with order m and type ρ
such that −1 < ρ ≤ 1. Then for every q ∈ Q there exists a constant c > 0 and N ∈ N0

such that for all F ∈ C∞0 (R2n, V ) we have

q (I0(F )) ≤ c
∑
|µ|≤N

‖F‖m,ρ
q,µ . (3.8)

Proof. Let F ∈ C∞0 (R2n, V ) have compact support in a compact interval K ⊆ R
2n.

Then we compute using (3.7)

I0(F ) =
1

(2π)n

∫
K

ei〈p,x〉F (x, p) dn x dn p
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=
1

(2π)n

∫
K

1

P s(x)P s(p)

(
Qse

i〈p,x〉)F (x, p) dn x dn p

=
1

(2π)n

∫
K

ei〈p,x〉QT

s

F (x, p)

P s(x)P s(p)
dn x dn p, (∗)

where QT
s =

∑
0≤|µ|,|ν|≤s(−1)|µ|+|ν|aµνs

∂|µ|

∂xµ
∂|ν|

∂pν
denotes the transposed differential operator

and s ∈ N0 is arbitrary. Indeed, the integration by parts is possible since F has compact
support inside the interval K. Since (∗) is valid for all s ∈ N0, the idea is to use a large
enough s which produces under the integral an integrable symbol on the right hand side,
independent of K. Since F has compact support it is a symbol for any order and any
type. Thus also the function (x, p) 7→ F (x,p)

P s(x)P s(p)
is a symbol, say of order m− 2sn and

type ρ. Thus for all µ, ν ∈ Nn
0 we have the estimate

q

(
∂|µ|

∂xµ
∂|ν|

∂pν
F (x, p)

P s(x)P s(p)

)
≤
(
1 + ‖(x, p)‖2

) 1
2
(m(q)−2sn−ρ(q)|µ⊕ν|)

∥∥∥∥ F ( · , · )
P s( · )P s( · )

∥∥∥∥m−2sn,ρ
q,µ⊕ν

for all s ∈ N0. We know that |µ ⊕ ν| = |µ| + |ν| ≤ 2sn as the operator Qs is of order
2sn only. Hence the condition ρ(q) > −1 shows that there is a s ∈ N0 such that for all
|µ|, |ν| ≤ sn we have

m(q)− 2sn− ρ(q)|µ⊕ ν| < −2(n+ 1). (3.9)

In fact, we get the left hand side as negative as we want by taking large enough s.
Finally, by Proposition 2.5, i.), we get the estimate∥∥∥∥ F

P s( · )P s( · )

∥∥∥∥m−2sn,ρ
q,µ⊕ν

≤ 2|µ|+|ν| max
µ′⊕ν′≤µ⊕ν

∥∥∥∥ 1

P s( · )P s( · )

∥∥∥∥−2sn,1
µ′⊕ν′

max
µ′′⊕ν′′≤µ⊕ν

‖F‖m,ρ
q,µ′′⊕ν′′ ,

since we have ρ ≤ 1 and 1
P s( · )P s( · ) is a symbol of order −2sn and type 1 according to

Lemma 2.9. Taking now s large enough so that (3.9) is satisfied we get the estimate

q (I0(F )) = q

(
1

(2π)n

∫
K

ei〈p,x〉QT

s

F (x, p)

P s(x)P s(p)
dn x dn p

)

≤ 1

(2π)n

∫
K

q

( ∑
0≤µ,ν≤s

aµνs (−1)|µ|+|ν|
∂|µ|

∂xµ
∂|ν|

∂pν
F (x, p)

P s(x)P s(p)

)
dn x dn p

≤ 1

(2π)n

∑
0≤µ,ν≤s

|aµνs |
∫
K

(
1 + ‖(x, p)‖2

)−(n+1)
dn x dn p

∥∥∥∥ F

P s( · )P s( · )

∥∥∥∥m−2sn,ρ
q,µ⊕ν

≤ c
∑

0≤|µ|,|ν|≤s

‖F‖m,ρ
q,µ⊕ν ,

with the constant

c =
22sn

(2π)n

∫
R2n

dn x dn p(
1 + ‖(x, p)‖2

)−(n+1)
max

0≤|µ|,|ν|≤s
|aµνs | max

0≤|µ′|,|ν′|≤s

∥∥∥∥ 1

P s( · )P s( · )

∥∥∥∥−2sn,1
µ′⊕ν′

<∞.
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Note that the integral is finite indeed as we were able to make the exponent (3.9) negative
enough such that the dependence on the compact interval K disappears. �

We now define oscillatory integrals for symbols F ∈ Sm,ρ(R2n, V ) of non-compact
support by extending the integral I0 defined on C∞0 (R2n, V ). Doing so, we will rely in
an essential manner on the preceding lemma and Proposition 2.10, iv.), and therefore
restrict to types ρ with −1 < ρ ≤ 1. The order m will be arbitrary.

To describe the extension procedure, we consider in addition to m and −1 < ρ ≤ 1
an auxiliary order m′ > m and type −1 < ρ′ ≤ ρ for Q, and the corresponding
inclusions

I0 : C∞0 (R2n, V ) ⊂ Sm,ρ(R2n, V ) ⊂ Sm
′,ρ′(R2n, V ) −→ V .

In general, C∞0 (R2n, V ) ⊂ Sm,ρ(R2n, V ) is not (sequentially) dense in the Sm,ρ-topology.
But according to Proposition 2.10, iv.), the sequential closure of C∞0 (R2n, V ) in the
weaker Sm

′,ρ′-topology contains Sm,ρ(R2n, V ). Moreover, according to the bound (3.8),
I0 : C∞0 (R2n, V ) −→ V is a continuous linear map in the Sm

′,ρ′-topology. We can thus
extend I0 to a continuous linear map from the sequential completion of C∞0 (R2n, V )
in the Sm

′,ρ′-topology to V . The restriction of this extension to Sm,ρ(R2n, V ) is our
definition of oscillatory integral on Sm,ρ(R2n, V ); it is denoted by

Im,ρ
m′,ρ′ : Sm,ρ(R2n, V ) −→ V . (3.10)

Theorem 3.2 Let V be a sequentially complete locally convex space with defining system
of seminorms Q, and m, −1 < ρ ≤ 1 an order and a type for Q.

i.) The integrals Im,ρ := Im,ρ
m′,ρ′ (3.10) are independent of the order and type m′, ρ′ as

long as m′ >m and −1 < ρ′ ≤ ρ.

ii.) Im,ρ : Sm,ρ(R2n, V ) −→ V is linear and continuous.

iii.) For F ∈ C∞0 (R2n, V ), we have Im,ρ(F ) = I0(F ).

iv.) For orders m,m′, types −1 < ρ,ρ′ ≤ 1, and F ∈ Sm,ρ(R2n, V ) ∩ Sm
′,ρ′(R2n, V ),

we have

Im,ρ(F ) = Im
′,ρ′(F ) . (3.11)

Proof. For the first part, let m′,m′′ be orders and ρ′,ρ′′ types for Q, with m′,m′′ >m
and −1 < ρ′,ρ′′ ≤ ρ, and F ∈ Sm,ρ(R2n, V ). We have to show Im,ρ

m′,ρ′(F ) = Im,ρ
m′′,ρ′′(F ).

By the above construction of these maps, there exist sequences {F ′n}, {F ′′n} ⊂ C∞0 con-
verging to F in the topology of Sm

′,ρ′(R2n, V ) and Sm
′′,ρ′′(R2n, V ), respectively, and

Im,ρ
m′,ρ′(F ) = lim

n→∞
I0(F

′
n) , Im,ρ

m′′,ρ′′(F ) = lim
n→∞

I0(F
′′
n ) . (3.12)

To show that these limits coincide, letm′′′, ρ′′′ be an order and type withm′′′ ≥m′,m′′,
and −1 < ρ′′′ ≤ ρ′,ρ′′. Fixing a seminorm q ∈ Q, we can use the bound (3.8) and (2.10)
to estimate with some constants c > 0, N ∈ N0,

q(I0(F
′
n)− I0(F ′′n )) ≤ c

∑
|µ|≤N

‖F ′n − F ′′n‖m
′′′,ρ′′′

q,µ
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≤ c
∑
|µ|≤N

(
‖F ′n − F‖m

′′′,ρ′′′

q,µ + ‖F − F ′′n‖m
′′′,ρ′′′

q,µ

)
≤ c

∑
|µ|≤N

(
‖F ′n − F‖m

′,ρ′

q,µ + ‖F − F ′′n‖m
′′,ρ′′

q,µ

)
.

In view of the approximation properties of the sequences {F ′n}, {F ′′n}, the last expression
converges to zero for n→∞, i.e., we have q(I0(F

′
n)−I0(F ′′n ))→ 0. Since q was arbitary,

(3.12) now gives Im,ρ
m′,ρ′(F ) = Im,ρ

m′′,ρ′′(F ). From now on, we write Im,ρ := Im,ρ
m′,ρ′ for this

integral. For part ii.), by construction, Im,ρ : Sm,ρ → V is a linear map which is
continuous in the Sm

′,ρ′-topology for m′ > m and −1 < ρ′ ≤ ρ. But as the topology
of Sm,ρ(R2n, V ) is stronger than that of Sm

′,ρ′(R2n, V ), this map is continuous in the
Sm,ρ-topology as well. By the very definition of Im,ρ, we have Im,ρ(F ) = I0(F ) for
F ∈ C∞0 (R2n, V ), i.e. iii.) holds. It remains to check iv.), and to this end, we consider
an order m′′ > m,m′ and type −1 < ρ′′ ≤ ρ,ρ′. Then for any F ∈ Sm,ρ(R2n, V ) ∩
Sm

′,ρ′(R2n, V ), there exists a sequence {Fn} ⊂ C∞0 (R2n, V ) converging to F in the
topology of Sm

′′,ρ′′(R2n, V ), and in view of i.), we have

Im,ρ(F ) = Im,ρ
m′′,ρ′′(F ) = lim

n→∞
I0(Fn) = Im

′,ρ′

m′′,ρ′′(F ) = Im
′,ρ′(F ) . (3.13)

This proves (3.11). �

The compatability (3.11) of the integral maps Im,ρ with the structure of the symbol
spaces allows us to consistently define an oscillatory integral on the space S(R2n, V ), see
(2.45), consisting of all Sm,ρ(R2n, V ), with arbitary orders m and types −1 < ρ ≤ 1.

Definition 3.3 The oscillatory integral is the linear map I : S(R2n, V ) → V uniquely
determined by I|Sm,ρ(R2n,V ) := Im,ρ, −1 < ρ ≤ 1. If the target space or the domain of
integration needs to be emphasized, we write more precisely IV or IR2n,V instead of I.
We also use the symbolic notation

(2π)−n
∫
R2n

dp dx ei〈p,x〉F (p, x) := I(F ) . (3.14)

Note that according to the discussion in Section 2.3, the space S(R2n, V ) and the
oscillatory integral I do not depend on a choice of defining system Q of seminorms, but
are intrinsically defined.

3.2 Calculational rules for the oscillatory integral

We now derive the main properties of the integral I. To begin with, we note how
oscillatory integrals can be computed in practice.

Proposition 3.4 i.) Let F ∈ S(R2n, V ), p0, x0 ∈ Rn, and χ ∈ C∞0 (R2n,R) with
χ(p, x) = 1 for (p, x) in some open neighborhood of (0, 0). Then the oscillatory
integral of F is the limit of Riemann integrals

I(F ) = (2π)−n lim
ε→0

∫
R2n

dp dx ei〈p,x〉χ(ε(p− p0), ε(x− x0))F (p, x) . (3.15)
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ii.) Let Q be a defining system of seminorms on V , with order m and type ρ such that
there exist constants C1, C2 ∈ R satisfying

m(q) ≤ C1 , 1 ≥ ρ(q) ≥ C2 > −1 (3.16)

for all q ∈ Q. Then there exists s ∈ N, and bµν ∈ C, µ, ν ∈ Nn
0 , |µ|, |ν| ≤ s,

such that for all F ∈ Sm,ρ(R2n, V ), the oscillatory integral is given by a convergent
Riemann integral

I(F ) =
∑
|µ|,|ν|≤s

bµν

∫
R2n

dp dx ei〈p,x〉
∂|µ|

∂pµ
∂|ν|

∂xν

(
F (p, x)∏n

k=1(i+ pk)s(i+ xk)s

)
. (3.17)

Proof. Fixing a defining system of seminorms Q on V , we consider a symbol F ∈
Sm,ρ(R2n, V ) for some order m and type −1 < ρ ≤ 1 for Q. Furthermore, let m′,ρ′ be
an auxiliary order and type for Q such that m′ > m and −1 < ρ′ ≤ ρ. It has been
shown in Corollary 2.28 that (χεF )(p, x) := χ(ε(p− p0), ε(x− x0))F (p, x) converges to
F in the topology of Sm

′,ρ′(R2n, V ) as ε → 0. Since χεF ∈ C∞0 (R2n, V ), the formula
I(F ) = limε→0 I0(χεF ) (3.15) holds by definition of I as the Sm,ρ-continuous extension
of I0. This proves the first part. The second part is basically a corollary of the proof of
Lemma 3.1: One first checks that if (3.16) holds, then there exists s ∈ N0 such that the
inequality (3.9) is valid for all q ∈ Q for the same value of s. Using a cutoff function χ
as in the first part of this proposition, we can then apply the arguments in the proof of
Lemma 3.1 to χεF ∈ C∞0 (R2n, V ) to conclude that there exist coefficients bµν such that

I0(χεF ) =
∑
|µ|,|ν|≤s

bµν

∫
R2n

dp dx ei〈p,x〉
∂|µ|

∂pµ
∂|ν|

∂xν
χ(εp, εx)F (p, x)∏n
k=1(i+ pk)s(i+ xk)s

. (3.18)

To control the limit ε→ 0, we again use the same arguments as in Lemma 3.1: For any
seminorm q, we find an integrable upper bound to (p, x) 7→ q

(
∂µp ∂

ν
xP
−s(p)P−s(x)F (p, x)

)
.

This allows us to carry out the limit ε → 0 in (3.18). Namely, applying Leibniz’ rule,
we see that all terms in (3.18) which contain derivatives of χ, and hence factors of ε,
converge to zero as ε → 0 because the derivatives of F and the damping factors are
bounded in each seminorm q. Only the term with no derivatives on χ remains, and
as this has an integrable upper bound, and χ(0, 0) = 1, we obtain the claimed formula
(3.17) for I(F ) = limε→0 I0(χεF ). �

If V is a Banach space and Q consists of just its norm, then (3.16) is clearly satisfied
for any order m, and any admissible type −1 < ρ ≤ 1. So in this case, the oscillatory
integrals can always be reformulated as improper Riemann integrals. But if Q is infinite,
and m unbounded, this is no longer the case. Nonetheless, also in this general situation,
oscillatory integrals exhibit many of the familiar properties of Riemann integrals. In
particular, they are compatible with continuous linear maps, and the usual rules of
substitution and integration by parts still apply, as we now show in the following lemmas
and propositions.
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Lemma 3.5 Let V, U be sequentially complete locally convex spaces, A : V −→ U a
continuous linear map, and F ∈ S(R2n, V ). Then AF : (p, x) 7→ AF (p, x) is a symbol
in S(R2n, U), and

AIV (F ) = IU(AF ) . (3.19)

Proof. First we note that the equation holds for compactly supported F . But then the
usual continuity and approximation argument shows that the equation also holds for
arbitrary F . �

Remark 3.6 If we consider an antilinear continuous map C : V → U instead, the only
difference to the above described situation is that the oscillating factor ei〈p,x〉 has to be
conjugated. This conjugation can be compensated by a variable substitution p → −p
in the integrals. So in this case, we have, F ∈ S(R2n, V ),

CIV (F ) = IU(C F−) with F−(p, x) := F (−p, x) . (3.20)

Lemma 3.7 Let q, y ∈ Rn, A ∈ GL(n,R), and denote by AT the transpose of A with
respect to the chosen inner product on Rn. Then, for any F ∈ S(R2n, V ), the functions

Fq,y,A(p, x) := e−i〈p,y〉F (Ap+ q, x) , (3.21)

F q,y,A(p, x) := e−i〈q,x〉F (p,ATx+ y) , (3.22)

are elements of S(R2n, V ) as well, and

I(Fq,y,A) = I(F q,y,A) . (3.23)

Proof. For F ∈ S(R2n, V ), an application of Lemma 2.21 and Lemma 2.22 shows that
the functions Fq,0,A and F 0,y,A without the oscillating factors lie in S(R2n, V ). But
(p, x) 7→ e−i〈p,y〉 and (p, x) 7→ e−i〈q,x〉 are scalar symbols of type 0 and order 0, as is
easily verified by differentiation. Hence Corollary 2.8 yields Fq,y,A, F

q,y,A ∈ S(R2n, V ).
To compare the oscillatory integrals of these functions, we pick χ ∈ C∞0 (R2n,R) as in
Proposition 3.4, and compute according to (3.15)

(2π)nI(Fq,y,A) = lim
ε→0

∫
R2n

dp dx ei〈p,x〉e−i〈p,y〉 χ(εp, εx)F (Ap+ q, x)

= lim
ε→0
| detA|−1

∫
R2n

dp dx ei〈A−1(p−q),x〉 χ
(
εA−1p, ε(x+ y)

)
F (p, x+ y)

= lim
ε→0

∫
R2n

dp dx ei〈p,x〉 χ
(
εA−1p, ε(ATx+ y)

)
e−i〈q,x〉F (p,ATx+ y) .

Since also (p, x) 7→ χ(A−1p,ATx) is a smooth, compactly supported function which is
equal to 1 on an open neighborhood of the origin, we can use Proposition 3.4 again to
conclude that the last line coincides with (2π)nI(F q,y,A). �

For the next statement, we represent the bilinear form used in the oscillating factor
as 〈p, x〉 = (p,Mx) with some M ∈ GL(n,R), | detM | = 1, and the standard Euclidean
inner product ( · , · ) on Rn. The transpose of M with respect to this inner product will
be denote MT .
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Proposition 3.8 Let F ∈ S(R2n, V ) and µ ∈ Nn
0 . Then ∂µpF , ∂µxF , (Mx)µF , (MTp)µF

lie in S(R2n, V ), and

I(∂µpF ) = (−i)|µ|I((Mx)µF ) , I(∂µxF ) = (−i)|µ|I((MTp)µF ) . (3.24)

Proof. For F ∈ C∞0 (R2n, V ), the claimed equations amount to an integration by parts
against the oscillating factor ei〈p,x〉 = ei(p,Mx), since

∂µp e
i(p,Mx) = i|µ| (Mx)µ ei(p,Mx) , ∂µxe

i(p,Mx) = i|µ| (MTp)µ ei(p,Mx) .

Thus we only have to show that the functions on the left and right hand side in (3.24)
are symbols in S(R2n, V ), and can be approximated by compactly supported symbols.
So let F ∈ Sm,ρ(R2n, V ) for some order m and type −1 < ρ ≤ 1 for a defining system of
seminorms Q for V , and pick a sequence Fn ∈ C∞0 (R2n, V ) converging to F in the Sm

′,ρ′-
topology for some m′ >m, −1 < ρ′ ≤ ρ. Then, according to Proposition 2.4, ∂µpFn →
∂µpF in the Sm

′−ρ′|µ|,ρ′-topology. But as ρ′ > −1, we can apply Proposition 2.3 iv.)

to see that this sequence also converges in the Sm
′+|µ|,ρ′-topology. Hence, by definition

of I, we have I(∂µpF ) = limn I0(∂
µ
pFn). Concerning the right hand side in (3.24), note

that (Mx)µ is a scalar symbol of order |µ| and type 1. Hence, using Corollary 2.8 and
ρ ≤ 1, we see that (Mx)µF is a symbol of order m + |µ| and type ρ, and thus an
element of S(R2n, V ). Moreover, (Mx)µFn → (Mx)µF in the Sm

′+|µ|,ρ′-topology. Thus
I((Mx)µF ) = limn I0((Mx)µFn), and the first identity in (3.24) follows. The proof of
the second identity is completely analogous. �

We next compute the oscillatory integrals of symbols (p, x) 7→ F (p, x) which are
constant in either x or p. The following result also explains our choice of normalization
factor (2π)−n in the definition (3.1) of the oscillatory integral.

Proposition 3.9 Let F ∈ S(R2n, V ) satisfy F (p, x) = F (0, x) or F (p, x) = F (p, 0) for
all p, x ∈ Rn. Then

I(F ) = F (0) . (3.25)

In particular, constant symbols v : (p, x) 7→ v, v ∈ V , have oscillatory integral I(v) = v.

Proof. We present only the proof for the claims about a symbol F ∈ S(R2n, V ) satisfying
F (p, x) = F (0, x); the arguments for the other case are analogous. To evaluate the
oscillatory integral of F , let χ ∈ C∞0 (Rn,R), with χ(x) = 1 for |x| ≤ 1, and let
χ̃(x) := (2π)−n/2

∫
R2n dp e

i〈p,x〉χ(p) denote the Fourier transform of χ with respect to
the chosen inner product. Then Proposition 3.4 can be applied with the product cutoff
function (p, x) 7→ χ(p)χ(x), and we obtain

I(F ) = lim
ε→0

(2π)−n
∫
Rn

dp

∫
Rn

dx ei〈p,x〉 χ(εp)χ(εx)F (0, x)

= lim
ε→0

(2π)−nε−n
∫
Rn

dp

∫
Rn

dx ei〈p,x/ε〉 χ(p)χ(εx)F (0, x)

= lim
ε→0

(2π)−n/2ε−n
∫
Rn

dx χ̃(x/ε)χ(εx)F (0, x)
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= lim
ε→0

(2π)−n/2
∫
Rn

dx χ̃(x)χ(ε2x)F (0, εx) .

To show that this limit coincides with F (0), let Q be a defining system of seminorms on
V , with order m and type −1 < ρ ≤ 1, such that F ∈ Sm,ρ(R2n, V ). For any q ∈ Q,
we have the estimate

q

(∫
Rn

dx χ̃(x)χ(ε2x)F (0, εx)−
∫
Rn

dx χ̃(x)F (0)

)
≤
∫
Rn

dx |χ̃(x)| q
(
χ(ε2x)F (0, εx)− F (0)

)
.

As the Fourier transform of a smooth, compactly supported function, χ̃ is an element
of S (Rn,C), and since F ∈ Sm,ρ(R2n, V ), and χ is bounded, we easily find a scalar
integrable function g such that |χ̃(x)| q (χ(ε2x)F (εx)− F (0)) ≤ g(x) for all ε ≤ 1.
Hence the limit ε→ 0 of the right hand side of the above estimate can be evaluated by
dominated convergence, and since χ(0) = 1, this limit is zero. As q was arbitrary, we
have in the topology of V

I(F ) = lim
ε→0

(2π)−n/2
∫
Rn

dx χ̃(x)χ(ε2x)F (0, εx) = (2π)−n/2
∫
Rn

dx χ̃(x)F (0) .

But in view of our normalization of the inner product 〈 · , · 〉, the inverse Fourier trans-
form gives (2π)−n/2

∫
dx χ̃(x) = χ(0) = 1. So we arrive at the claimed identity

I(F ) = χ(0)F (0) = F (0) .

The statement about constant symbols follows by choosing F constant. �

As the last property of oscillatory integrals needed in our applications, we discuss a
Fubini type theorem for multiple oscillatory integrals. To this end, we consider symbols
F ∈ S(R2n1⊕R2n2 , V ) depending on two pairs of variables (p1, x1), (p2, x2), with pj, xj ∈
R
nj , j = 1, 2. Our discussion of multiple oscillatory integrals is greatly facilitated by

Proposition 2.29, stating that for F ∈ S(R2n1 ⊕R2n2 , V ), the maps

F1 : R2n1 −→ S(R2n2 , V ) and F2 : R2n2 −→ S(R2n1 , V ), (3.26)

given by

F1(p1, x1) : (p2, x2) 7→ F (p1, x1; p2, x2) and F2(p2, x2) : (p1, x1) 7→ F (p1, x1; p2, x2),

respectively, are symbols in their own right.
Subsequently we have to distinguish different kinds of oscillatory integrals. OnR2n1⊕

R
2n2 we use the induced pairing

〈p1 ⊕ p2, x1 ⊕ x2〉 = 〈p1, x1〉+ 〈p2, x2〉 . (3.27)

Hence the oscillatory integrals over symbols F ∈ S(R2n1 ⊕ R2n2 , V ) will be carried
out with respect to the oscillating factor ei〈p1,x1〉ei〈p2,x2〉, and denoted by I as before.
On the other hand, oscillatory integrals over the symbols (3.26) which are defined on
R

2n1 (respectively R2n2), and take values in some other symbol space Sm,ρ(R2n2 , V )
(respectively Sm,ρ(R2n1 , V )), will be carried out with respect to the oscillating factors
ei〈p1,x1〉 (respectively ei〈p2,x2〉), and denoted Î1 (respectively Î2).

36



Proposition 3.10 Let V be a sequentially complete locally convex space. For any F ∈
S(R2n1 ⊕R2n2 , V ), we have Î1(F1) ∈ S(R2n2 , V ), Î2(F2) ∈ S(R2n1 , V ), with

I2(Î1(F1)) = I1(Î2(F2)) = I(F ) . (3.28)

Equivalently,

(2π)−n2

∫
R2n2

dp2 dx2 e
i〈p2,x2〉

(
(2π)−n1

∫
R2n1

dp1 dx1 e
i〈p1,x1〉 F (p1, x1; p2, x2)

)

=(2π)−n1

∫
R2n1

dp1 dx1 e
i〈p1,x1〉

(
(2π)−n2

∫
R2n2

dp2 dx2 e
i〈p2,x2〉 F (p1, x1; p2, x2)

)
=(2π)−(n1+n2)

∫
R2n1⊕R2n2

dp dx ei〈p,x〉 F (p, x)

Proof. Let Q be a defining system of seminorms for V , and m, −1 < ρ ≤ 1 an order
and a type for Q such that F ∈ Sm,ρ(R2n1 ⊕R2n2 , V ). According to Proposition 2.29,
F1 ∈ Sm̂,ρ̂(R2n1 , Sm,ρ(R2n2 , V )), F2 ∈ Sm̂,ρ̂(R2n2 , Sm,ρ(R2n1 , V )) with the order m̂ and
type ρ̂ defined in (2.63). Note that since −1 < ρ̂ ≤ 1, the oscillatory integrals Î1(F1) ∈
Sm,ρ(R2n2 , V ) ⊂ S(R2n2 , V ) and Î2(F2) ∈ Sm,ρ(R2n1 , V ) ⊂ S(R2n1 , V ) exist. Hence all
integrals in (3.28) are well-defined. To show that they coincide, we can argue with the
usual continuity and approximation techniques: for compactly supported symbols the
integrals coincide by the Fubini theorem for Riemann integrals. Then the continuity
statements of Proposition 2.29 and Theorem 3.2 give the equality for all symbols. �

4 Rieffel deformations for polynomially bounded Rn-

actions

We now apply the symbol calculus developed so far to extend Rieffel’s deformation of
Fréchet algebras with isometric Rn-actions [23] to a more general setting. As before,
we will consider functions taking values in locally convex sequentially complete vector
spaces V . We will in this chapter always assume a filtrating defining system Q of
seminorms for V . The symbols we are interested in will be generated with the help of
suitable Rn-actions, and we introduce some standard notation first.

For an Rn-action α : Rn × V −→ V , we consider the functions

α(v) : Rn −→ V, x 7→ αx(v) (4.1)

for v ∈ V . The action will be called strongly smooth if α(v) ∈ C∞(Rn, V ) for all v ∈ V .
Its derivatives at x = 0 are denoted by

Xµ : V −→ V , Xµv := ∂µxαx(v)|x=0 , (4.2)

where µ ∈ Nn
0 as usual. All actions will be assumed to act by linear maps αx : V −→

V . If α is strongly smooth and the αx are continuous for all x ∈ Rn, then one has
∂µxαx(v) = Xµαxv = αxX

µv.
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Definition 4.1 Let V be a sequentially complete locally convex space with defining sys-
tem of seminorms Q, and let m be an order for Q. A smooth polynomially bounded
R
n-action (of order m) is an action α : Rn × V −→ V such that

i.) α(v) ∈ Sm,0(Rn, V ) for each v ∈ V .

ii.) V 3 v 7→ α(v) ∈ Sm,0(Rn, V ) is continuous, i.e. for any q ∈ Q, µ ∈ Nn
0 , there

exists q′ ∈ Q, such that

‖α(v)‖m,0
q,µ ≤ q′(v) (4.3)

for all v ∈ V .

Smooth polynomially bounded actions can equivalently be characterized as follows.

Lemma 4.2 Let α be a strongly smooth action on V . Then α is polynomially bounded
of order m in the sense of Definition 4.1 if and only if the following two conditions are
satisfied:

i.) For each q ∈ Q, there exists q′ ∈ Q such that

q(αx(v)) ≤ (1 + ‖x‖2)
1
2
m(q) q′(v) (4.4)

for all x ∈ Rn, v ∈ V .

ii.) The derivatives Xµ : V −→ V are continuous.

If V is a Fréchet space and Q is chosen countable then α is polynomially bounded of
order m if and only if just the first condition is satisfied.

Proof. Let α be a smooth polynomially bounded action of order m. Then its defining
properties imply that for any q ∈ Q there exists q′ ∈ Q such that for all x ∈ Rn, v ∈ V ,

q(αx(v)) ≤ (1 + ‖x‖2)
1
2
m(q)‖α(v)‖m,0

q,0 ≤ (1 + ‖x‖2)
1
2
m(q)q′(v) ,

i.e. (4.4) holds. Furthermore, given q ∈ Q, µ ∈ Nn
0 , there exists q′ ∈ Q such that

q(Xµv) = q(∂µxαx(v)|x=0) ≤ sup
x∈Rn

q(∂µxαx(v))

(1 + ‖x‖2) 1
2
m(q)

= ‖α(v)‖m,0
q,µ ≤ q′(v)

for all v ∈ V . Hence Xµ : V −→ V is continuous. Now assume that α is a strongly
smooth action satisfying the two conditions listed in this lemma. Then to any q ∈ Q,
µ ∈ Nn

0 , there exist q′, q′′ ∈ Q such that

q(∂µxαx(v)) = q(αx(X
µv)) ≤ (1 + ‖x‖2)

1
2
m(q)q′(Xµv) ≤ (1 + ‖x‖2)

1
2
m(q)q′′(v)

for all x ∈ R
n, v ∈ V . This shows both, α(v) ∈ Sm,0(V ), and the continuity of

v 7→ α(v). Hence Definition 4.1 and the two conditions in this lemma are equivalent.
We now consider the special but important case that V is a Fréchet space. Thus assume
that Q is countable. When equipped with the family of seminorms Q∞ := {qµ :=
q ◦ Xµ | q ∈ Q, µ ∈ Nn

0}, this space will be called V ∞. Also V ∞ is a Fréchet space.
As linear spaces, V = V ∞, and clearly, the identity id : V ∞ −→ V is linear, continuous
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and bijective. Hence we can apply the open mapping theorem for Fréchet spaces to
conclude that id : V −→ V ∞ is continuous as well, i.e. V = V ∞ as Fréchet spaces. But
this is equivalent to the derivatives Xµ : V −→ V being continuous, i.e. condition ii.) is
automatically satisfied. �

Remark 4.3 i.) A polynomially bounded action α acts by continuous maps αx, as
can be read off from (4.4).

ii.) The arguments in the above lemma also explain why we consider only actions of
type ρ = 0 here. For if α(v) ∈ Sm,ρ(V ) and the derivatives Xµ are continuous, we
can argue as above to show that α(v) is actually of type 0.

In Rieffel’s original approach, V is taken to be a Fréchet algebra with a strongly
continuous Rn-action α by automorphisms αx which are isometric for all q ∈ Q. On
the subspace V ∞ of all smooth vectors for α, the α(v) are then symbols of order 0 and
type 0, see [23]. Using the symbol calculus of the preceding sections, we will now extend
many of the results of Rieffel to the case where α(v) ∈ Sm,0(Rn, V ) for an arbitrary
order m. In Section 5, we will then provide various examples of smooth polynomially
bounded Rn-actions.

In comparison to [23], we will take here also a somewhat more general point of view
concerning the algebraic structure, which involves three sequentially complete locally
convex spaces V,W,U with filtrating defining systems of seminorms QV ,QW ,QU . Each
of these spaces is equipped with a smooth polynomially bounded Rn-action αV , αW , αU

of order mV , mW , mU , respectively, and the derivatives with respect to these actions
will be denoted Xµ

U , Xµ
V , Xµ

W .
In this setting, we consider a bilinear map

µ : V ×W −→ U (4.5)

which is required to be covariant in the sense that

αUx µ(v, w) = µ(αVx v, α
W
x w) , v ∈ V, w ∈ W, x ∈ Rn . (4.6)

In many applications µ will be jointly continuous, but in some cases we also need to
work with a bilinear map µ which is only separately continuous. In the following we
will therefore always only assume that µ is separately continuous, and explicitly point
out when we consider the special case that µ is jointly continuous.

This setting includes the case where A := V = W = U is an algebra with (separately)
continuous product µ, and α := αV = αW = αU acts by automorphisms. But the
more general formulation allows, for example, to also consider covariant modules, where
A := V is taken to be an algebra and E := W = U is a left A-module with a smooth
R
n-action β := αW = αU , and (separately) continuous module structure µ : A×E −→ E

satisfying (4.6). This setup will therefore be suitable for the discussion of deformations
of algebras and their covariant modules. In the following, we will always assume without
further mentioning that spaces V,W,U , actions αV , αW , αU , and a bilinear map µ with
the specified properties are given.
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Following Rieffel, we now consider a real (n × n)-matrix θ as our deformation pa-
rameter, and introduce the functions, v ∈ V , w ∈ W ,

µθvw : Rn ×Rn −→ U, µθvw(p, x) := µ(αVθpv, α
W
x w) . (4.7)

As αV , αW are smooth and polynomially bounded, it follows from Proposition 2.5, ii.),
that these functions are symbols in S(R2n, U) if µ is jointly continuous. If µ is however
only separately continuous, more work is needed to arrive at this conclusion. We begin
with the following lemma.

Lemma 4.4 Let α be a smooth polynomially bounded action on V . Moreover, let F ∈
C∞(Rn, V ). Then

Fα : Rn ×Rn −→ V , Fα(p, x) := αp(F (x))

is smooth.

Proof. First we show that Fα is continuous. To this end, we make use of the differen-
tiability of α, which implies that for any q ∈ Q, there exists q′ ∈ Q and a continuous
function f : Rn ×Rn −→ R+ such that for all p, p′ ∈ Rn, v ∈ V

q(αp(v)− αp′(v)) ≤ ‖p− p′‖ f(p, p′) q′(v) .

The proof of this estimate can be carried out along the same lines as in Lemma 2.25.
With this bound we find, p, p′, x, x′ ∈ Rn,

q (Fα(p, x)− Fα(p′, x′))

≤ q(αp(F (x))− αp′(F (x))) + q(αp′(F (x))− αp′(F (x′)))

≤ ‖p− p′‖ f(p, p′) q′(F (x)) + (1 + ‖p′‖2)
1
2
m(q)q′′(F (x)− F (x′)) ,

with some q′, q′′ ∈ Q. The continuity of Fα is then clear. Furthermore, (p, x) 7→ Fα(p, x)
is separately smooth in p and x (in x because the αp are linear and continuous), with
partial derivatives

∂νpF
α(p, x) = αpX

νF (x) , ∂νxF
α(p, x) = αp∂

ν
xF (x) .

According to Lemma 4.2, the derivatives Xν : V −→ V are continuous. Thus x 7→
XνF (x) is smooth, and clearly, x 7→ ∂νxF (x) is smooth as well. Hence the partial
derivatives of Fα are of the same form as Fα, and thus in particular continuous. This
implies that Fα is smooth. �

Lemma 4.5 Let v ∈ V , w ∈ W and consider Fvw, Gvw : Rn ×Rn −→ U defined by

Fvw(p, x) := αUp
(
µ
(
v, αWx (w)

))
and Gvw(p, x) := αUx

(
µ
(
αVp (v), w

))
. (4.8)

Then there exists an order m̂ on QU such that Fvw, Gvw ∈ Sm̂,0(R2n, U), and for fixed
v0 ∈ V , w0 ∈ W , the mappings

W 3 w 7→ Fv0w ∈ Sm̂,0(R2n, U)
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V 3 v 7→ Gvw0 ∈ Sm̂,0(R2n, U)

are linear and continuous.

Proof. We will only prove the statements about Fvw as the discussion of Gvw is com-
pletely analogous. In view of the separate continuity of µ, the map w 7→ µ(v, w) is
continuous for fixed v, and as αW is a smooth action, we see that Fvw is of the form con-
sidered in the previous lemma and hence smooth. Its partial derivatives are, ν, κ ∈ Nn

0 ,

∂νp∂
κ
xFvw(p, x) = αUp

(
Xν
Uµ
(
v, αWx (Xκ

Ww)
))
.

To estimate these derivatives, let q ∈ QU . Then there exists q′ ∈ QU such that

q(∂νp∂
κ
xFvw(p, x)) ≤ (1 + ‖p‖2)

1
2
mU (q)q′(Xν

Uµ(v, αWx X
κ
Ww)) .

As w 7→ µ(v, w) is continuous and U = U∞, W = W∞ as locally convex spaces, we now
find q′′, q′′′, q′′′′ ∈ QW , σ ∈ Nn

0 , and constants c, Cv > 0 such that

q(∂νp∂
κ
xFvw(p, x)) ≤ (1 + ‖p‖2)

1
2
mU (q)Cv q′′(Xσ

WX
κ
Wα

W
x w)

≤ Cv (1 + ‖p‖2)
1
2
mU (q)(1 + ‖x‖2)

1
2
mW (q′′)q′′′(Xσ

WX
κ
Ww)

≤ Cv c (1 + ‖p‖2 + ‖x‖2)
1
2
(|mU (q)|+|mW (q′′)|)q′′′′(w)

for all p, x ∈ Rn, w ∈ W . Here c depends on κ, ν, q, but not on v, w, p, x. This estimate
shows that Fvw is a symbol in Sm̂,0(R2n, U), with m̂(q) := |mU(q)| + |mW (q′′)| (cf.
Proposition 2.5). Moreover,

‖Fvw‖m̂,0
q,ν⊕κ ≤ Cv c q′′′′(w) ,

that is, w 7→ Fvw is continuous for fixed v. �

After these preparations we can derive the following basic statement about the de-
formation of µ.

Proposition 4.6 Let v ∈ V , w ∈ W , and θ ∈ Rn×n.

i.) The functions µθvw are symbols in S(R2n, U).

ii.) The maps defined by their oscillatory integrals

V ×W 3 (v, w) 7→ µθ(v, w) := IU(µθvw) ∈ U (4.9)

are bilinear and (separately) continuous if µ is (separately) continuous.

iii.) µθ satisfies the covariance property (4.6).

Proof. Let v ∈ V , w ∈ W and θ be fixed. Thanks to the covariance of µ (4.6), we have

µθvw(p, x) = Fvw(θp, x− θp) = Gvw(x, θp− x) .
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As Fvw, Gvw ∈ S(R2n, U), an application of Lemma 3.7 shows µθvw ∈ S(R2n, U) and
hence the first part. By the preceding lemma, we see that

V ×W 3 (v, w) 7→ µθvw ∈ Sm̂,0(R2n, U)

is separately continuous for some order m̂ on QU . Hence the oscillatory integral IU(µθvw)
exists and depends separately continuous on v, w. The bilinearity of µθ is clear. In
case µ is jointly continuous, note that by assumption, αVθ (v) ∈ Sm

V ,0(Rn, V ) and
αW (w) ∈ Sm

W ,0(Rn,W ) with orders mV ,mW for QV , QW . The maps v 7→ αVθ (v)
and w 7→ αW (w) are continuous from V (respectively W ) to Sm

V ,0(Rn, V ) (respectively
Sm

W ,0(Rn,W )) by Definition 4.1, ii.). Furthermore, according to Proposition 2.5, ii.),
αVθ (v), αW (w) 7→ µ(αVθ (v), αW (w)) maps Sm

V ,0(Rn, V ) × Sm
W ,0(Rn,W ) continuously

into Sm
′,0(R2n, U), with some order m′ for QU . Finally, the oscillatory integral maps

µθvw 7→ µθ(v, w) continuously from Sm
′,0(R2n, U) to U by Theorem 3.2. As a compo-

sition of these continuous maps, µθ : V × W → U is therefore continuous, too. This
completes the second part. To check the covariance property (4.6), note that since αUx
is continuous for each x ∈ Rn by Remark 4.3 i.), it can be pulled inside the oscillatory
integral defining µθ according to Lemma 3.5. Since (4.6) holds for µ, and αV , αW are
R
n-actions, it follows that µθ satisfies (4.6) as well:

αUx µθ(v, w) = (2π)−n
∫
R2n

dp dy ei〈p,y〉 αUx µ(αVθq(v), αWy (w))

= (2π)−n
∫
R2n

dp dy ei〈p,y〉 µ(αVθq+x(v), αWy+x(w))

= µθ(α
V
x (v), αWx (w)) .

�

Depending on the context, µθ from (4.9) will be referred to as the deformed product,
deformed module structure, or just deformed bilinear map.

In the next proposition we justify these names by demonstrating the most basic
feature of a deformation, namely that it reduces to the identity for vanishing deformation
parameter.

Proposition 4.7 Let θ, θ′ ∈ Rn×n.

i.) For θ = 0, we have µ0 = µ.

ii.) (µθ)θ′ = µθ+θ′.

Proof. Let v ∈ V,w ∈ W . For θ = 0, the symbol (p, x) 7→ µ(αVθpv, α
W
x w) (4.7) is indepen-

dent of p. Hence Proposition 3.9 applies, and we have µ0(v, w) = µθ(α
V
0 (v), αW0 (w)) =

µ(v, w), showing the first part. For the second part, by Proposition 4.6, µθ has the
same properties as µ, so (µθ)θ′ is well-defined. Using successively the definition of µθ,
the substitution x → x − x′ according to Lemma 3.7 and Fubini’s theorem in form of
Proposition 3.10, we compute

(µθ)θ′(v, w)
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= (2π)−n
∫
R2n

dp′ dx′ ei〈p
′,x′〉 µθ(α

V
θ′p′(v), αWx′ (w))

= (2π)−n
∫
R2n

dp′ dx′ ei〈p
′,x′〉

(
(2π)−n

∫
R2n

dp dx ei〈p,x〉 µ(αVθp+θ′p′(v), αWx+x′(w))

)

= (2π)−n
∫
R2n

dp′ dx′ ei〈p
′,x′〉

(
(2π)−n

∫
R2n

dp dx ei〈p,x〉e−i〈p,x
′〉 µ(αVθp+θ′p′(v), αWx (w))

)

= (2π)−n
∫
R2n

dp dx ei〈p,x〉
(

(2π)−n
∫
R2n

dp′ dx′ ei〈p
′,x′〉 e−i〈p,x

′〉µ(αVθ′p′+θp(v), αWx (w))

)
.

Lemma 3.7 and Proposition 3.9 show that the inner oscillatory integral has the value
µ(αV(θ+θ′)p(v), αWx (w)). Plugging this result into the above computation gives the desired

answer (µθ)θ′(v, w) = µθ+θ′(v, w) by definition of µθ. �

The following lemma shows two further invariance properties of the deformation
which are helpful in many situations.

Lemma 4.8 i.) Let v ∈ V and w ∈ W . If either v is αV -invariant or w is αW -
invariant, then µθ(v, w) = µ(v, w).

ii.) Let Y be another sequentially complete locally convex vector space, and T : U −→ Y
linear and continuous. If θ ∈ Rn×n is skew-symmetric and T is αU -invariant, i.e.
T ◦ αUx = T for all x ∈ Rn, then

Tµθ(v, w) = Tµ(v, w) . (4.10)

Proof. For part i.), note that under the specified circumstances, the symbol (p, x) 7→
µ(αVθp(v), αWx (w)) depends only on one of its two variables p, x. Hence Proposition 3.9
applies, and we have µθ(v, w) = µ(αV0 (v), αW0 (w)) = µ(v, w). For part ii.), let v ∈ V ,
w ∈ W . Using the continuity and linearity of T as in Lemma 3.5, as well as the
covariance (4.6) and the invariance of T gives

(2π)n Tµθ(v, w) =

∫
R2n

dp dx ei〈p,x〉 Tµ(αVθp(v), αWx (w))

=

∫
R2n

dp dx ei〈p,x〉 Tµ(αVθp−x(v), w) .

Now we use Lemma 3.7 to carry out the substitution x→ x+θp. As θ is skew-symmetric,
〈p, θp〉 = 0, and we get

Tµθ(v, w) = (2π)−n
∫
R2n

dp dx ei〈p,x〉 Tµ(αVθp(v), w) .

This is again an oscillatory integral over a symbol which is constant in one variable, and
by Proposition 3.9, we arrive at Tµθ(v, w) = Tµ(αV0 (v), w) = Tµ(v, w). �

We now consider the deformation of algebras and modules. Let A := V be an
algebra with separately continuous product µ : A × A −→ A, and assume that the
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(smooth, polynomially bounded) Rn-action α acts by automorphisms. Furthermore, let
E := W = U be a left A-module with separately continuous module map µ̃ : A×E −→ E

and a (smooth, polynomially bounded) Rn-action β satisfying (4.6) with V = A, W =
U = E, αV = α, and αW = αU = β. In this situation, we can deform the product µ
according to

µθ(a, b) := a×θ b := (2π)−n
∫
R2n

dp dx ei〈p,x〉 µ̃(αθp(a), αx(b)) , a, b ∈ A, (4.11)

and the module structure µ̃ according to

µ̃θ(a, ψ) := aθψ := (2π)−n
∫
R2n

dp dx ei〈p,x〉 µ̃(αθp(a), βx(ψ)) , a ∈ A, ψ ∈ E , (4.12)

with the same deformation parameter θ ∈ Rn×n. We will write Aθ for the algebra given
by the linear space A and the product ×θ.

Theorem 4.9 Let A be a sequentially complete locally convex algebra with separately
continuous product µ, and let E be a sequentially complete locally convex left A-module
with separately continuous module structure µ̃. Let α be a smooth polynomially bounded
R
n-action by automorphisms on A, and β a smooth polynomially bounded Rn-action on

E such that

βx(µ̃(a, ψ)) = µ̃(αx(a), βx(ψ)) , a ∈ A, ψ ∈ E, x ∈ Rn . (4.13)

i.) In this case (E, µ̃θ) is a left Aθ-module, i.e.

(a×θ b)θψ = aθbθψ , a, b ∈ A, ψ ∈ E . (4.14)

ii.) If the product µ in A is associative, then so is the deformed product µθ (4.11).

Proof. Let a, b ∈ A, ψ ∈ E, and θ ∈ Rn×n. By applying repeatedly the arguments from
Lemma 4.5, one sees that

R
4n 3 (p, x, p′, x′) 7−→ µ̃ (αθp′+θp(a), µ̃(αθp+x′(b), βx(ψ)))

is a symbol in S(R4n,E). Its oscillatory integral can be written with the help of Fubini’s
theorem, the module property µ̃(µ(a, b), ψ) = µ̃(a, µ̃(b, ψ)), the separate continuity of
µ̃, and (4.6) as

(2π)−2n
∫
R4n

dp dx dp′ dx′ ei〈p,x〉+i〈p
′,x′〉 µ̃ (αθp′+θp(a), µ̃(αθp+x′(b), βx(ψ)))

= (2π)−2n
∫
R2n

dp dx ei〈p,x〉
(∫

R2n

dp′ dx′ ei〈p
′,x′〉 µ̃ (αθp′+θp(a), µ̃(αθp+x′(b), βx(ψ)))

)

= (2π)−2n
∫
R2n

dp dx ei〈p,x〉
(∫

R2n

dp′ dx′ ei〈p
′,x′〉 µ̃ (µ(αθp′+θp(a), αθp+x′(b)), βx(ψ))

)

= (2π)−2n
∫
R2n

dp dx ei〈p,x〉 µ̃

(
αθp

∫
R2n

dp′ dx′ ei〈p
′,x′〉 µ(αθp′(a), αx′(b)), βx(ψ)

)

44



= (2π)−n
∫
R2n

dp dx ei〈p,x〉 µ̃ (αθp(µθ(a, b)), βx(ψ))

= µ̃θ(µθ(a, b), ψ) .

On the other hand, we can use Lemma 3.7 to carry out the substitutions p′ → p′ − p
and x→ x+ x′ in the first oscillatory integral. This gives

µ̃θ(µθ(a, b), ψ)

= (2π)−2n
∫
R4n

dp dx dp′ dx′ ei〈p,x〉+i〈p
′,x′〉 µ̃ (αθp′+θp(a), µ̃(αθp+x′(b), βx(ψ)))

= (2π)−2n
∫
R4n

dp dx dp′ dx′ ei〈p,x+x
′〉+i〈p′−p,x′〉 µ̃ (αθp′(a), µ̃(αθp+x′(b), βx+x′(ψ))) .

Notice that the exponential appearing here equals ei〈p,x〉+i〈p
′,x′〉 because the term 〈p, x′〉

drops out. So we can again use the covariance and separate continuity of µ̃, and split the
double oscillatory integral into two single oscillatory integrals, to arrive at the desired
result,

µ̃θ(µθ(a, b), ψ)

= (2π)−2n
∫
R4n

dp dx dp′ dx′ ei〈p,x〉+i〈p
′,x′〉 µ̃ (αθp′(a), βx′ (µ̃(αθp(b), βx(ψ))))

= (2π)−2n
∫
R2n

dp′ dx′ ei〈p
′,x′〉 µ̃

(
αθp′(a), βx′

(∫
R2n

dp dx ei〈p,x〉µ̃(αθp(b), βx(ψ))

))
= (2π)−n

∫
R2n

dp′ dx′ ei〈p
′,x′〉 µ̃ (αθp′(a), βx′ (µ̃θ(b, ψ)))

= µ̃θ(a, µ̃θ(b, ψ)) .

Rewriting µθ and µ̃θ according to (4.11) and (4.12) yields (4.14). The second part follows
by considering the special case E = A, µ̃ = µ, β = α. �

For isometric actions on Fréchet algebras, the associativity of the deformed product
is known from Rieffel’s work [23]. The deformation of the module structure can also be
viewed as an alternative deformation of an algebra A represented on E, which changes
the elements a ∈ A according to a 7→ aθ, but keeps the product unchanged. This
deformation has been introduced under the name of warped convolution in the context
of C∗-algebras [8, 9], it is equivalent to the deformation of the product according to
(4.14).

Sticking to the setting of an algebra A with product µ and a left A-module with
module structure µ̃, and actions α, β satisfying the assumptions of Theorem 4.9, we next
show how identities and star involutions behave under the deformation.

Proposition 4.10 Let A be a locally convex sequentially complete algebra with sepa-
rately continuous associative product, and α : Rn × A −→ A a smooth, polynomially
bounded Rn-action by automorphisms.

45



i.) If A has an identity 1, this is also an identity for the deformed product (4.11).

ii.) If A is a ∗-algebra with continuous ∗-involution and θ is skew-symmetric with re-
spect to the inner product used in the oscillatory integrals defining the deformed
product, then a 7→ a∗ is also a star involution for the deformed product, i.e.,

(a×θ b)∗ = b∗ ×θ a∗ , a, b ∈ A . (4.15)

Proof. The first part is clear: since α acts by automorphisms, we have αx(1) = 1 for all
x ∈ Rn. Hence, by Lemma 4.8, i.),

a×θ 1 = a1 = a , 1×θ a = 1a = a

for any a ∈ A. For the second part, we note that as the involution a 7→ a∗ is antilinear
and continuous, we can use (3.20) and Lemma 3.7 to compute for a, b ∈ A

(a×θ b)∗ = (2π)−n
∫
R2n

dp dx ei〈p,x〉 (α−θpaαxb)
∗

= (2π)−n
∫
R2n

dp dx ei〈p,x〉 αxb
∗ α−θpa

∗

= (2π)−n
∫
R2n

dp dx ei〈p,x〉 α−θT xb
∗ αpa

∗

= b∗ ×−θT a∗ .

In case θ is skew-symmetric, i.e., θT = −θ, (4.15) follows. �

Again, these statements are well-known in Rieffel’s setting [23]. Analogous to the
preceding proposition, there exist two closely related properties in the module defor-
mation setting of Theorem 4.9: First, if a vector ψ ∈ E is β-invariant, then we have
aθψ = aψ. This is again a straightforward consequence of Lemma 4.8, i.).

Second, in the case of a covariant Hilbert space representation of a ∗-algebra A, we
have a compatability between the ∗-operation and the deformation similar to Proposi-
tion 4.10 ii.). To describe this, consider a locally convex sequentially complete ∗-algebra
A with a smooth polynomially bounded Rn-action αA by ∗-automorphisms. Let fur-
thermore H be a Hilbert space carrying a strongly continuous unitary representation
u of Rn, and let E ⊂ H denote the subspace of smooth vectors for u. We consider
a covariant representation of A, i.e. a ∗-representation π of A by (closable) operators
defined on E such that π(αA

x (a))ψ = u(x)π(a)u(x)−1ψ for all a ∈ A, x ∈ Rn, ψ ∈ E.
Then we can apply our deformation formula to the module map µ(a, ψ) := π(a)ψ. In

case of a skew-symmetric deformation parameter θ, the map πθ defined by the deformed
module map, πθ(a)ψ := µθ(a, ψ), then gives a ∗-representation of Aθ on E, i.e.

πθ(a
∗)ψ = π(a)∗ψ , a ∈ A, ψ ∈ E . (4.16)

In a C∗-framework with order 0 actions, this fact has been established in [8, Lemma 2.2].
Since the proof is essentially the same in the present situation, we refrain from giving
the details here.
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5 Examples

In this section we present a number of explicit examples of polynomially bounded Rn-
actions complying with the conditions in Definition 4.1. In particular, we show how
target spaces with unbounded orders appear naturally when studying compactly sup-
ported Rn-actions.

5.1 The canonical Rn-action on symbol spaces

The first example is the action studied in Section 2.3 on the symbol spaces.

Proposition 5.1 Let V be a sequentially complete locally convex space with a defining
system of seminorms Q, and let m, ρ be an order and a type for Q, with ρ ≥ 0. Then
(αxF )(y) := F (x + y) is a smooth polynomially bounded Rn-action on Sm,ρ(Rn, V ) of
order m̂(‖ · ‖m,ρ

q,µ ) := |m(q)−ρ(q)|µ|| and type ρ̂(‖ · ‖m,ρ
q,µ ) := 0 where q ∈ Q, µ ∈ Nn

0 , as
defined in Definition 4.1. More precisely, for any q ∈ Q, µ ∈ Nn

0 , there exists Cq,µ > 0
such that

‖α(F )‖m̂,0

‖·‖m,ρ
q,µ ,ν

≤ Cq,µ‖F‖m,ρ
q,µ+ν (5.1)

for all F ∈ Sm,ρ(Rn, V ), ν ∈ Nn
0 .

Proof. It has been shown in Proposition 2.24 that α is an Rn-action on Sm,ρ(Rn, V ),
and in Proposition 2.27 that Rn 3 x 7→ αx(F ) ∈ Sm,ρ(Rn, V ) is smooth for each F ∈
Sm,ρ(Rn, V ) if ρ ≥ 0. To derive the statements about the polynomial bounds, let q ∈ Q,
µ, ν ∈ Nn

0 , and F ∈ Sm,ρ(Rn, V ) with ρ ≥ 0. The derivatives ∂νxαx(F ) = αx(∂
ν
xF ), see

(2.61), satisfy according to Lemma 2.22

‖∂νxαx(F )‖m,ρ
q,µ = ‖αx(∂νxF )‖m,ρ

q,µ ≤ c(x) ‖∂νxF‖m,ρ
q,µ

with a positive scalar symbol c ∈ S|m(q)−ρ(q)|µ||,1(Rn,R). Furthermore, we have by
application of Proposition 2.4 and Proposition 2.3, iv.)

‖∂νxF‖m,ρ
q,µ = ‖F‖m+ρ|ν|,ρ

q,µ+ν ≤ ‖F‖m,ρ
q,µ+ν

since ρ ≥ 0. With these two bounds, we arrive at

‖α(F )‖m̂,0

‖·‖m,ρ
q,µ ,ν

= sup
x∈Rn

‖∂νxαx(F )‖m,ρ
q,µ

(1 + ‖x‖2) 1
2
m̂
≤ sup

x∈Rn

c(x)

(1 + ‖x‖2) 1
2
|m(q)−ρ(q)|µ||

‖F‖m,ρ
q,µ+ν ,

which establishes (5.1) with the constant Cq,µ := ‖c‖|m(q)−ρ(q)|µ||,1
0 <∞. Hence α(F ) ∈

Sm̂,0(Rn, Sm,ρ(Rn, V )) and F 7→ α(F ) is continuous, as required in Definition 4.1. �

By the same arguments, one checks that (αx(F ))(y) = F (x + y) gives a smooth
polynomially bounded Rn-action on the vector valued Schwartz space S (Rn, V ) (Def-
inition 2.18), topologized by the seminorms qm,µ(·) := ‖ · ‖−m,0q,µ , with q ∈ Q, m ∈ N0,
µ ∈ Nn

0 (2.47). Here the order is m̂(qm,µ) = m, and again ρ̂(qm,µ) = 0.

47



Remark 5.2 Remarkably, in both examples the orders m̂ of the induced action is
necessarily unbounded, even if we started with symbols of bounded order. Only in the
particular case where m(q) = 0 = ρ(q) we get again a bounded order m̂ = 0. This was
the particular case of an isometric action as discussed by Rieffel in [23].

If V = A is an algebra with continuous product, we can use the action α to deform
the pointwise product in Sm,ρ(Rn,A) as in (4.11), with some deformation parameter
θ ∈ Rn×n. As the evaluation maps Smρ(Rn,A) 3 F 7→ F (x) ∈ A are continuous, we
have the explicit formula

(F ×αθ G)(x) = (2π)−n
∫
R2n

dp dy ei〈p,y〉 F (y + θp)G(y + x) (5.2)

as a A-valued oscillatory integral.
In addition to α, we have on the Schwartz space also smooth polynomially bounded

R
n-actions of the form

(βxF )(y) := ei(x,y)F (y) , (5.3)

where (·, ·) denotes a bilinear form on Rn. Considered on a symbol space Sm,ρ(Rn, V )
of fixed order, these actions are not smooth, but on S (Rn, V ), they comply with Def-
inition 4.1, with order m̂(qm,µ) = |µ| and type ρ̂(qm,µ) = 0. Taking V = A to be an
algebra, the deformation of the pointwise product in S (Rn,A) with the action (5.3)
is however almost trivial; one has (F ×βθ G)(x) = ei(θAx,x)F (x)G(x) with a matrix A
depending on the choice of inner product on Rn.

We now explain how some deformations of algebras of scalar-valued functions dis-
cussed in the literature fit into our framework. The first and best-known example is
clearly the scalar Schwartz space S (Rn,C) with pointwise product. Here the deformed
product (5.2) even exists pointwise as a Riemann integral because of the decay of the
integrand. It is usually referred to as Moyal product or twisted product, see e.g. [15].

Another version of this is to consider S (Rn,C) as an algebra with convolution
(f ∗ g)(x) =

∫
Rn
dy f(y)g(x− y) as product, and the multiplicative action (5.3). Taking

all inner products ofRn as the usual Euclidean inner product, and θ to be antisymmetric,
we find

(f ∗βθ g)(x) =

∫
Rn

dy ei〈x,θy〉 f(y)g(x− y) . (5.4)

This deformed product is usually referred to as a twisted convolution according to [15].
Since the Fourier transform F : S −→ S intertwines the pointwise product and convo-
lution as well as the actions α and β, the twisted convolution product is equivalent to
the product ×αθ .

The deformed products ×αθ and ∗βθ can be extended from S (Rn,C) to spaces of
distributions [12,15]. In particular, in [12] it is explained how ×αθ can be defined on the
distribution space O′M(Rn), the dual of the space OM(Rn) of tempered smooth functions.
Recall that OM(Rn) is defined as the set of all smooth f : Rn −→ C such that for each
multiindex µ, there exists some k ∈ Z such that x 7→ (1 + ‖x‖2)k|(∂µxf)(x)| is bounded.
In our notation, that is OM = ∪m,ρSm,ρ(Rn,C), where the union runs over all orders
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and types m, ρ ∈ R. Similarly, the classical function space OC(Rn) is in our notation
OC(Rn) = ∪mSm,0(Rn,C) = S∞,0(Rn,C). Clearly S (Rn) ⊂ OC(Rn) ⊂ OM(Rn) ⊂
S ′(Rn) and S (Rn) ⊂ O′M(Rn) ⊂ O′C(Rn) ⊂ S ′(Rn), and the Fourier transform F

on S ′(Rn) restricts to isomorphisms OC(Rn) −→ O′M(Rn) and OM(Rn) −→ O′C(Rn).
Since OC(Rn) contains only symbols of type ρ = 0, we can form the deformed products
f×αθ g (5.2) for f, g ∈ OC(Rn). (For f, g ∈ OM(Rn), this is not possible because we need
restrictions on the type for α to be smooth and the oscillatory integrals to exist.) Making
use of the Fourier transform F : OC(Rn) −→ O′M(Rn), this also gives us a product on
O′M(Rn),

T × S := F(F−1T ×αθ F−1S) . (5.5)

As F intertwines the actions α and β, it is easy to see that (5.5) coincides with the
“other twisted convolution” constructed in [12].

5.2 Compactly supported Rn-actions

In this subsection we construct and study a different class of smooth polynomially
bounded Rn-actions on function spaces. The actions we are interested in here are given
by pullbacks of Rn-actions τ on Rn which act non-trivially only in a compact set K,
i.e. satisfy τx(y) = y for all y /∈ K, x ∈ Rn. We want to construct τ in such a way that
αKx (f) := f◦τx is smooth and polynomially bounded in the sense of Definition 4.1, say on
C∞(Rn,C). For simplicity, we restrict to scalar-valued functions here. It is clear that
we cannot hope for an isometric action as required by Rieffel’s original construction
as soon as we leave the C0-framework: controlling also derivatives as needed in the
C∞-topology will necessarily lead to a non-isometric action.

To check what kind of condition on τ is necessary for this, consider a function
fj which coincides with a coordinate x 7→ xj, j = 1, . . . , n, on K. If αK(fj) ∈
Sm̂,0(Rn,C∞(Rn,C)) for some appropriate m̂, then the supremum

‖αK(fj)‖
m̂(pK,l),0
pK,l,µ = sup

x∈Rn

pK,l(∂
µ
xα

K
x fj)

(1 + ‖x‖2) 1
2
m̂(pK,l)

= sup
x∈Rn

y∈K,|ν|≤l

|∂µx∂νy τx(y)j|
(1 + ‖x‖2) 1

2
m̂(pK,l)

(5.6)

must be finite. Hence we need bounds of the form |∂νy∂µxτx(y)j| ≤ cµl(1 + ‖x‖2) 1
2
bl for all

ν ∈ Nn
0 with |ν| ≤ l. Taking into account that τ satisfies τx(K) = K for all x ∈ Rn by

its support property, that K is compact, and that τ is an Rn-action, it follows that we
can choose b0 = 0. These observations motivate the following definition.

Definition 5.3 Let K ⊂ Rn be compact, and b := {bl}l∈N0 ⊂ R+ a sequence starting
with b0 = 0. A smooth Rn-action with support in K and order b is a smooth function
τ : Rn ×Rn −→ R

n such that

i.) τx(τx′(y)) = τx+x′(y) for all x, x′, y ∈ Rn.

ii.) τx(y) = y for all x ∈ Rn and all y ∈ Rn\K.

iii.) For each µ ∈ Nn
0 , l ∈ N0, there exists a constant clµ > 0 such that

sup
y∈K,|ν|≤l
j∈{1,...,n}

|∂νy∂µxτx(y)j| ≤ clµ(1 + ‖x‖2)
1
2
bl (5.7)
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holds for all x ∈ Rn.

We will later construct explicit examples of actions satisfying these assumptions.
Postponing this construction for a moment, we first show that such τ do indeed define
smooth polynomially bounded R

n-actions by pullback. To begin with, we note the
following elementary lemma.

Lemma 5.4 Let τ be a smooth Rn-action with support in a compact set K ⊂ Rn, and
order b. Then for each µ ∈ Nn

0 , l ∈ N0, there exists a constant Clµ > 0 such that

sup
y∈K,|ν|≤l

|∂νy∂µxf(τx(y))| ≤ Clµ (1 + ‖x‖2)
1
2
(b1+···+bl) · pK,l+|µ|(f) (5.8)

for all f ∈ C∞(Rn,C), x ∈ Rn. Here pK,l+|µ| denotes the usual C∞-seminorms (2.7)
with q = | · |.

Proof. We first consider the case l = 0 without derivatives with respect to y. By the
chain rule, we have

∂µxf(τx(y)) =
∑
λ≤µ

(∂λf)(τx(y)) · gλ(x, y) ,

where the gλ(x, y) are polynomials in partial derivatives of the τx(y)j with respect to
the components of x. According to (5.7) with l = 0 (and b0 = 0), these functions
are uniformly bounded in x ∈ Rn and y ∈ K. Furthermore, we have τx(y) ∈ K for
all x ∈ Rn, since y ∈ K. Hence (5.8) follows by straightforward estimate. We now
proceed by induction and assume that (5.8) holds for some l ∈ Nn

0 , and all µ ∈ Nn
0 ,

f ∈ C∞(Rn,C). Then, j ∈ {1, . . . , n}, |ν| ≤ l,

∂ν+ejy ∂µxf(τx(y)) = ∂νy∂
µ
x

n∑
j′=1

∂ejy τx(y)j′ · (∂ej′f)(τx(y))

=
n∑

j′=1

∑
ν′≤ν
µ′≤µ

( ν
ν ′

)( µ
µ′

)(
∂ν−ν

′+ej
y ∂µ−µ

′

x τx(y)j′
)(

∂ν
′

y ∂
µ′

x (∂ej′f)(τx(y))
)
.

In this sum, the derivatives of τx(y)j′ can be estimated directly with (5.7), taking into
account |ν − ν ′+ ej| ≤ l+ 1. For the derivatives of f , we can use (5.8) by our induction
hypothesis, since |ν ′| ≤ |ν| ≤ l. This yields constants Cj′ν′µ′ > 0 such that

|∂ν+ejy ∂µxf(τx(y))| ≤
∑
j′,ν′,µ′

Cj′ν′µ′(1 + ‖x‖2)
1
2
bl+1(1 + ‖x‖2)

1
2
(b1+···+bl) pK,|µ′|+|ν′|(∂

ej′f)

≤ C ′jµν(1 + ‖x‖2)
1
2
(b1+···+bl+bl+1) · pK,l+1+|µ|(f) .

Since j was arbitrary, (5.8) follows by induction in l. �

50



Proposition 5.5 Let τ be a smooth Rn-action on Rn, with order b and support in some
compact set K ⊂ Rn. Then its pullback (αKx f)(y) := f(τx(y)) is a smooth polynomially
bounded Rn-action on C∞(Rn,C), on each symbol space Sm,ρ(Rn,C), m, ρ ∈ R, and
on the Schwartz space S (Rn,C).

Proof. Let us first consider αK acting on C∞(Rn,C). It is clear that it is an Rn-action
on this space because τ is an action and smooth. To estimate its seminorms, let J ⊂ Rn

be compact, µ, ν ∈ Nn
0 , and f ∈ C∞(Rn,C). Taking into account that τ acts trivially

outside K, and using the bounds of Lemma 5.4, we find

sup
x∈Rn

y∈J,|ν|≤l

|∂νy∂µxf(τx(y))|
(1 + ‖x‖2) 1

2
(b1+···+bl)

≤ sup
x∈Rn

y∈J\K,|ν|≤l

|∂νy∂µxf(y)|
(1 + ‖x‖2) 1

2
(b1+···+bl)

+ sup
x∈Rn

y∈J∩K,|ν|≤l

|∂νy∂µxf(τx(y))|
(1 + ‖x‖2) 1

2
(b1+···+bl)

≤ δµ,0 sup
x∈Rn

y/∈J\K,|ν|≤l

|∂νyf(y)|
(1 + ‖x‖2) 1

2
(b1+···+bl)

+ Clµ pK,l+|µ|(f)

= δµ,0 pJ\K,l(f) + Clµ pK,l+|µ|(f) ,

where the last step relies on bl ≥ 0. This estimate shows in particular that for any
x ∈ Rn, the map αKx : C∞(Rn,C) −→ C∞(Rn,C) is continuous, a fact which is known
to be true for any diffeomorphism. Moreover, once we have checked that x 7→ αKx f is
smooth in the topology of C∞(Rn,C), the estimate also shows that αK(f) is a symbol in
Sm̂,0(Rn,C∞(Rn,C)), of order m̂(pJ,l) := b1+· · ·+bl, and that f 7→ αK(f) is continuous.
So in order to verify all conditions of Definition 4.1, it only remains to establish the
smoothness of αK : but this is true for arbitrary smooth Lie group actions on smooth
manifolds. We now consider αK on the symbol and Schwartz subspaces of C∞(Rn,C).
Since τ acts non-trivially only in a compact set, it is clear that these subspaces are
invariant under αK , and αK restricts to Rn-actions on all these spaces. Concerning
smoothness, note that the functions αKx (f)−f and ε−1(αKεej(f)−f)−∂tαKtej(f)|t=0 have
compact support in K for all f ∈ Sm,ρ, ε > 0, j ∈ {1, . . . , n}, x ∈ Rn. So their symbol
seminorms ‖ · ‖m,ρν can be estimated against some pK,l(·). But the latter seminorms
converge to zero for x → 0 respectively ε → 0, by the preceding results about αK on
C∞(Rn,C). Thus we conclude that αK is also smooth on the symbol spaces Sm,ρ(Rn,C),
m, ρ ∈ R, and the Schwartz space S (Rn,C). The symbol property of αK(f), and the
continuity of f 7→ αK(f) for these spaces can now be estimated as before, by splitting
f = f0 + f1 ∈ Sm,ρ(Rn,C) into a compactly supported symbol f0, and a symbol f1 with
support disjoint from K which is fixed by αK . �

We now turn to the construction of examples of smooth compactly supported Rn-
actions, and consider the one-dimensional case n = 1 first. As a starting point, we use
the same idea as in [19] and take a diffeomorphism γ : (−1, 1) −→ R to define

τx(y) :=

{
γ−1(γ(y) + x) ; |y| < 1

y ; |y| ≥ 1
, x ∈ R . (5.9)
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It is clear that τ is an R-action, i.e., τx(τx′(y)) = τx+x′(y) for all x, x′, y ∈ R, and τ
acts non-trivially only inside the interval K := [−1, 1]. But we have to choose γ in
such a way that also the smoothness and boundedness assumptions of Definition 5.3
are satisfied. For the discussion of these two properties, it is instructive to view τ as
the flow of an autonomous ordinary differential equation dφ/dx = L(φ(x)) with initial
condition φ(0) = y. Differentiation of φ(x) = τx(y) (5.9) with respect to x then shows
that

L(x) =

{
1

γ′(x)
; |x| < 1

0 ; |x| ≥ 1
. (5.10)

It is a well-known fact that the solutions x 7→ φ(x) = τx(y) will depend smoothly on x
and the initial condition y if L is smooth. Thus smoothness of τ is guaranteed if γ′(x)
diverges fast enough as x → ±1, such that (5.10) is smooth. On the other hand, the
bounds on ∂kx∂

l
yτx(y) that can be obtained by exploiting that τ is the flow of a differential

equation with compactly supported L are only of exponential type. Therefore, we show
in the following lemma that by a careful adjustment of the diffeomorphism γ, one can
achieve polynomial bounds on ∂kx∂

l
yτx(y).

Lemma 5.6 There exist smooth R-actions on R with support in [−1, 1] and order bl =
2l + 1, which act transitively on (−1, 1).

Proof. The action will be constructed in the form (5.9) with appropriately chosen γ. It
is already clear from (5.9) that τ is an action with support in [−1, 1], acting transitively
on (−1, 1). To verify the crucial bounds (5.7),

sup
|y|≤1
|∂kx∂lyτx(y)| ≤ clk(1 + x2)

1
2
(2l+1) , x ∈ R , (5.11)

we first derive a formula for the derivatives of τx(y) = γ−1(γ(y) +x), |y| < 1, for generic
diffeomorphisms γ. This is done with the help of two differentiation identities, the first
of which states that multiple derivatives of γ−1 have the form

∂lyγ
−1(y) =

∑
n

cn
γ′(γ−1(y))n1 · · · γ(l)(γ−1(y))nl

γ′(γ−1(y))2l−1
, (5.12)

where the sum runs over finitely many terms with numerical coefficients cn. In the above
formula, the powers nj satisfy n1 + · · ·+ nl = l − 1 in each term, a fact that can easily
be proven by induction in l.

The second identity is an iterated chain rule for smooth functions f, g : R −→ R,

∂ly(f(g(y)) =
l∑

r=1

c′r g
′(y)s1 · · · g(l)(y)sl · f (r)(g(y)) , (5.13)

where the c′r are numerical coefficients and the powers sj satisfy s1 + · · ·+ sl = r in each
term. Again, the proof by induction is straightforward.
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Application of these two differentiation rules to τx(y) = γ−1(γ(y)+x), |y| < 1, yields

∂kx∂
l
yτx(y) = ∂kx

l∑
r=1

c′rγ
′(y)s1 · · · γ(l)(y)sl · (γ−1)(r)(γ(y) + x)

=
l∑

r=1

c′rγ
′(y)s1 · · · γ(l)(y)sl · (γ−1)(r+k)(γ(y) + x)

=
l∑

r=1

c′r
∑
n

cn
γ′(y)s1 · · · γ(l)(y)sl · γ′(τx(y))n1 · · · γ(r+k)(τx(y))nr+k

γ′(τx(y))2(r+k)−1
. (5.14)

To obtain useful bounds on this expression, we have to estimate the higher derivatives
|γ(m)(y)| for m = 1, . . . , l, and |γ(j)(τx(y))| for j = 1, . . . , r + k, in terms of the first
derivatives |γ′(τx(y))|. Simple estimates of this form do apparently not exist for generic
γ. We therefore choose γ of a special form, which will allow for convenient computations.

So let γ be antisymmetric, i.e., γ(−y) = −γ(y), and choose it to be equal to e(y) :=
exp 1

1−y for y ≥ 1
2
. Note that this choice already implies that τ : R2 −→ R is smooth,

since all derivatives of L(y) := 1/γ′(y) = (1 − y)2e−1/(1−y) converge to zero for y → 1.
Moreover, a short calculation shows that the tangent of γ in y = 1

2
has its zero at

y = 1
4

and consequently, we can choose γ on [−1
2
, 1
2
] in such a way that γ′(y) increases

monotonically as |y| increases. In particular, we then have the lower bound γ′(y) ≥
γ′(0) > 0, |y| < 1.

We now turn to estimating the derivatives |γ(j)(y)| for a diffeomorphism γ with the
specified properties. Since γ′ is bounded from below and γ(j) is continuous, there exist
constants Cj < ∞ such that |γ(j)(y)/γ′(y)| ≤ Cj for all y ∈ [−1

2
, 1
2
]. For y > 1

2
, we can

use the explicit form γ(y) = exp 1
1−y , which implies that γ(j)(y) is the product of γ(y)

and a polynomial of order 2j in 1
1−y . Hence γ(j)(y)/γ′(y) coincides for y > 1

2
with a

rational function of y which diverges polynomially as y → 1. Because of the symmetry
properties of γ′ and γ(j), the same is true for the region y < −1

2
and the limit y → −1.

But as γ′(y) has no zeros and diverges exponentially for |y| → ±1, we find for any ε > 0
a constant Cj,ε such that

|γ(j)(y)|
γ′(y)

≤ Cj,ε γ
′(y)ε , y ∈ (−1, 1) . (5.15)

Since τx leaves the interval (−1, 1) invariant for any x ∈ R, we also have

|γ(j)(τx(y))| ≤ Cj,ε γ
′(τx(y))1+ε , x ∈ R, y ∈ (−1, 1) . (5.16)

Next we derive a bound on the ratios γ′(y)
γ′(τx(y))

. For this it is sufficient to consider

y ∈ [0, 1) because of the symmetry of γ′, and for fixed x ∈ R, we split this interval at

ξ(x) := τ2|x|(
1
2
) = e−1(e(1

2
) + 2|x|) ≥ 1

2
, (5.17)

and estimate in the two regions y ∈ [0, ξ(x)] and y ∈ (ξ(x), 1) separately. Note that
e−1(y) = 1− 1/ log y and e′(y) = (1− y)−2e(y).
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In the inner region [0, ξ(x)), the monotonicity of γ′ and the explicit form of our
diffeomorphism around ξ(x) ≥ 1

2
yield

γ′(y)

γ′(τx(y))
≤ γ′(ξ(x))

γ′(0)
=

e(ξ(x))

γ′(0) (1− ξ(x))2
, |y| ≤ ξ(x) ,

= γ′(0)−1
(
e(1

2
) + 2|x|

)
· log(e(1

2
) + 2|x|)

≤ c(1 + x2)δ , (5.18)

where the power δ > 1
2

can be chosen arbitrarily close to 1
2

(it will be fixed at the end
of the proof), and the numerical constant c depends on δ.

For the estimate in the outer region (ξ(x), 1), we use the inequalities

e(y) + x ≥ e(ξ(x))− |x| = e(1
2
) + |x| ≥ e(1

2
) , y ∈ [ξ(x), 1) , (5.19)

and e(y) ≥ e(ξ(x)) > 2|x|, implying e(y) − |x| ≥ 1
2
e(y) > 1 for y > ξ(x). It follows

from (5.19) that τx(y) = e−1(e(y) + x) in this region. The explicit form of γ and these

inequalities lead to a uniform bound on γ′(y)
γ′(τx(y))

,

γ′(y)

γ′(τx(y))
=

1

(1− y)2 log(e(y) + x)2
e(y)

e(y) + x
, y ∈ (ξ(x), 1) ,

≤ 1

(1− y)2 log(e(y)− |x|)2
e(y)

e(y)− |x|
.

≤ 2

(1− y)2( 1
1−y − log 2)2

≤ 2

(1− 1
2

log 2)2
. (5.20)

After a possible readjustment of the constant c in (5.18) we therefore obtain

γ′(y) ≤ c(1 + x2)δ γ′(τx(y)) , x ∈ R , y ∈ (−1, 1) , (5.21)

where δ > 1
2

can still be chosen. Combining this bound with (5.15), we also have∣∣γ(m)(y)
∣∣ =
|γ(m)(y)|
γ′(y)

· γ′(y) ≤ C ′m,ε (1 + x2)δ(1+ε) · γ′(τx(y))1+ε . (5.22)

We can now apply (5.16) and (5.22) to estimate (5.14). Taking into account that in
each term in that sum, we have s1 + · · ·+ sl = r and n1 + · · ·+nr+k = r+ k− 1, we get
after collecting all factors

|∂kx∂lyτx(y)| ≤
∑
n

l∑
r=1

C(1 + x2)δ(1+ε)r γ′(τx(y))ε(2r+k−1)−k , (5.23)

where C represents all the numerical constants appearing in the various bounds, de-
pending on l, k,m, n and some arbitrary ε > 0, δ > 1

2
. For k ≥ 1, the exponent of

γ′(τx(y)) is negative for sufficiently small ε, and then

|∂kx∂lyτx(y)| ≤
∑
n

l∑
r=1

C(1 + x2)δ(1+ε)r γ′(0)ε(2r+k−1)−k ≤ C ′(1 + x2)δ(1+ε)l , |y| < 1 .
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For the case k = 0, note that since τ0(y) = y and l ≥ 1, we have ∂lyτ0(y) = 0 and can
estimate via

|∂lyτx(y)| =
∣∣∣∣∫ x

0

dx′ ∂x′∂
l
yτx′(y)

∣∣∣∣ ≤ |x| · C ′(1 + x2)δ(1+ε)l ≤ C ′′(1 + x2)δ(1+ε)l+
1
2 . (5.24)

Choosing δ = 2
3

and ε = 1
2

now gives the claimed bounds (5.11). �

Next we show how the above constructed R-action on R can be promoted to suitable
R
n-action on Rn based on the ideas from [24, Ex. 4.5].

Lemma 5.7 Let τ 1 be a smooth polynomially bounded R-action on R with support in
[−1, 1], as constructed in Lemma 5.6. Furthermore, let ε > 0 and χ : R → R be a
smooth function which is equal to 1 on [−1, 1], and has support in [−1− ε, 1 + ε]. Then

τnx (y) := (τ 1x1·χ(y1)···χ(yn)(y1), . . . , τ
1
xn·χ(y1)···χ(yn)(yn)) (5.25)

is a smooth polynomially bounded Rn-action on Rn, with support in [−1− ε, 1 + ε]×n.

Proof. Let I := [−1, 1] and Iε := [−1− ε, 1 + ε]. If y /∈ I×nε , there exists j ∈ {1, . . . , n}
such that yj /∈ Iε, and hence χ(y1) · · ·χ(yn) = 0. Thus τnx (y) = (τ 10 (y1), . . . , τ

1
0 (yn)) = y

in this case, which shows that τn has support in B. As a composition of smooth functions
τn is smooth. To show that it is an action, let x, x′, y ∈ Rn, j ∈ {1, . . . , n}, and compute

τnx (τnx′(y))j = τ 1xj ·χ(τnx′ (y)1)···χ(τ
n
x′ (y)n)

(τnx′(y)j)

= τ 1xj ·χ(τnx′ (y)1)···χ(τ
n
x′ (y)n)

(τ 1x′j ·χ(y1)···χ(yn)(yj))

= τ 1
xj ·χ
(
τ1
x′
1
χ(y1)···χ(yn)

(y1)
)
···χ
(
τ1
x′nχ(y1)···χ(yn)

(y1)
)
+x′j ·χ(y1)···χ(yn)

(yj) .

This coincides with τnx+x′(y)j = τ 1(xj+x′j)χ(y1)···χ(yn)
(yj) if

χ(y1) · · ·χ(yn) = χ
(
τ 1x′1χ(y1)···χ(yn)(y1)

)
· · ·χ

(
τ 1x′nχ(y1)···χ(yn)(y1)

)
. (5.26)

Assume some component yk does not lie in I. Then τ 1x′kχ(y1)···χ(yn)
(yk) = yk by the support

properties of τ 1. If, on the other hand, yk ∈ I, then τ 1x′kχ(y1)···χ(yn)
(yk) ∈ I as well, and

since χ = 1 on I, we find also in this case χ(yk) = χ(τ 1x′kχ(y1)···χ(yn)
(yk)). Hence (5.26)

holds for all x, y, y′, and it follows that τn is an Rn-action.
It remains to verify the bounds (5.7) on the derivatives of τn, i.e. we have to estimate

∂µx∂
ν
y τ

1
xjχ(y1)···χ(yn)(yj). In comparison to ∂µx∂

ν
y τ

1
xj

(yj), the y-derivatives produce finitely

many extra factors of xj and derivatives of χ(y1) · · ·χ(yn), and the x-derivatives produce
extra factors of χ(y1) · · ·χ(yn). All y-dependence can be uniformly estimated because
of the compact support of (the derivatives of) χ. So we arrive at a finite sum of the
form

|∂µx∂νy τnx (y)j| ≤
∑

ν′≤ν,µ′≤µ

cν′µ′ |xj|s(ν
′,µ′) |(∂µ′x ∂ν

′

y τ
1)xjχ(y1)···χ(yn)(yj)| ,
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with s(ν ′, µ′) ≤ |ν|. For yj ∈ I, the derivatives of τ 1 can now be estimated with (5.11),
and (1 + x2j) ≤ (1 + ‖x‖2). For yj ∈ Iε\I, we can use the invariance τt(yj) = yj, t ∈ R,
and |yj| ≤ 1 + ε, to estimate the derivatives of τ 1. This shows that if τ 1 was of order b,
then τn is of order at most bl + l <∞. �

After these constructions, it is now easy to show the existence of smooth polynomially
bounded Rn-actions supported in arbitrarily small regions.

Theorem 5.8 Let K ⊂ Rn be open. Then there exist non-trivial smooth polynomially
bounded Rn-actions on Rn, with support in K.

Proof. In Lemma 5.7, we have constructed a non-trivial smooth polynomially bounded
R
n-action τn with support in a cube [−r, r]×n centered at the origin. Clearly, the

polynomial estimates are at most rescaled by affine transformations of Rn which allows
to squeeze and move the support into any given compact subset. �
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